Spaces:
Running
on
Zero
Running
on
Zero
# Copyright © Alibaba, Inc. and its affiliates. | |
# The implementation here is modifed based on diffusers.StableDiffusionPipeline, | |
# originally Apache 2.0 License and public available at | |
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py | |
import copy | |
import inspect | |
import re | |
import warnings | |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
import os | |
import torch | |
import torch.nn.functional as F | |
from diffusers import (AutoencoderKL, DiffusionPipeline, ControlNetModel, UNet2DConditionModel) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
try: | |
from diffusers.models.autoencoders.vae import DecoderOutput | |
except: | |
from diffusers.models.vae import DecoderOutput | |
from diffusers.models.controlnet import ControlNetOutput | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import \ | |
StableDiffusionSafetyChecker | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import (PIL_INTERPOLATION, deprecate, is_accelerate_available, | |
is_accelerate_version, logging, | |
replace_example_docstring) | |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
import PIL | |
import numpy as np | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import EulerAncestralDiscreteScheduler | |
>>> from txt2panoimage.pipeline_base import StableDiffusionBlendExtendPipeline | |
>>> model_id = "models/sd-base" | |
>>> pipe = StableDiffusionBlendExtendPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
>>> pipe = pipe.to("cuda") | |
>>> pipe.vae.enable_tiling() | |
>>> pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
>>> # remove following line if xformers is not installed | |
>>> pipe.enable_xformers_memory_efficient_attention() | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "a living room" | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
re_attention = re.compile( | |
r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", | |
re.X, | |
) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
res.append([text, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [['', 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], | |
max_length: int): | |
r""" | |
Tokenize a list of prompts and return its tokens with weights of each token. | |
No padding, starting or ending token is included. | |
""" | |
tokens = [] | |
weights = [] | |
truncated = False | |
for text in prompt: | |
texts_and_weights = parse_prompt_attention(text) | |
text_token = [] | |
text_weight = [] | |
for word, weight in texts_and_weights: | |
# tokenize and discard the starting and the ending token | |
token = pipe.tokenizer(word).input_ids[1:-1] | |
text_token += token | |
# copy the weight by length of token | |
text_weight += [weight] * len(token) | |
# stop if the text is too long (longer than truncation limit) | |
if len(text_token) > max_length: | |
truncated = True | |
break | |
# truncate | |
if len(text_token) > max_length: | |
truncated = True | |
text_token = text_token[:max_length] | |
text_weight = text_weight[:max_length] | |
tokens.append(text_token) | |
weights.append(text_weight) | |
if truncated: | |
logger.warning( | |
'Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples' | |
) | |
return tokens, weights | |
def pad_tokens_and_weights(tokens, | |
weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=True, | |
chunk_length=77): | |
r""" | |
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. | |
""" | |
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) | |
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length | |
for i in range(len(tokens)): | |
tokens[i] = [ | |
bos | |
] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] | |
if no_boseos_middle: | |
weights[i] = [1.0] + weights[i] + [1.0] * ( | |
max_length - 1 - len(weights[i])) | |
else: | |
w = [] | |
if len(weights[i]) == 0: | |
w = [1.0] * weights_length | |
else: | |
for j in range(max_embeddings_multiples): | |
w.append(1.0) # weight for starting token in this chunk | |
w += weights[i][j * (chunk_length - 2):min( | |
len(weights[i]), (j + 1) * (chunk_length - 2))] | |
w.append(1.0) # weight for ending token in this chunk | |
w += [1.0] * (weights_length - len(w)) | |
weights[i] = w[:] | |
return tokens, weights | |
def get_unweighted_text_embeddings( | |
pipe: DiffusionPipeline, | |
text_input: torch.Tensor, | |
chunk_length: int, | |
no_boseos_middle: Optional[bool] = True, | |
): | |
""" | |
When the length of tokens is a multiple of the capacity of the text encoder, | |
it should be split into chunks and sent to the text encoder individually. | |
""" | |
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) | |
if max_embeddings_multiples > 1: | |
text_embeddings = [] | |
for i in range(max_embeddings_multiples): | |
# extract the i-th chunk | |
text_input_chunk = text_input[:, i * (chunk_length - 2):(i + 1) | |
* (chunk_length - 2) + 2].clone() | |
# cover the head and the tail by the starting and the ending tokens | |
text_input_chunk[:, 0] = text_input[0, 0] | |
text_input_chunk[:, -1] = text_input[0, -1] | |
text_embedding = pipe.text_encoder(text_input_chunk)[0] | |
if no_boseos_middle: | |
if i == 0: | |
# discard the ending token | |
text_embedding = text_embedding[:, :-1] | |
elif i == max_embeddings_multiples - 1: | |
# discard the starting token | |
text_embedding = text_embedding[:, 1:] | |
else: | |
# discard both starting and ending tokens | |
text_embedding = text_embedding[:, 1:-1] | |
text_embeddings.append(text_embedding) | |
text_embeddings = torch.concat(text_embeddings, axis=1) | |
else: | |
text_embeddings = pipe.text_encoder(text_input)[0] | |
return text_embeddings | |
def get_weighted_text_embeddings( | |
pipe: DiffusionPipeline, | |
prompt: Union[str, List[str]], | |
uncond_prompt: Optional[Union[str, List[str]]] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
no_boseos_middle: Optional[bool] = False, | |
skip_parsing: Optional[bool] = False, | |
skip_weighting: Optional[bool] = False, | |
): | |
r""" | |
Prompts can be assigned with local weights using brackets. For example, | |
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', | |
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. | |
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. | |
Args: | |
pipe (`DiffusionPipeline`): | |
Pipe to provide access to the tokenizer and the text encoder. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
uncond_prompt (`str` or `List[str]`): | |
The unconditional prompt or prompts for guide the image generation. If unconditional prompt | |
is provided, the embeddings of prompt and uncond_prompt are concatenated. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
no_boseos_middle (`bool`, *optional*, defaults to `False`): | |
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and | |
ending token in each of the chunk in the middle. | |
skip_parsing (`bool`, *optional*, defaults to `False`): | |
Skip the parsing of brackets. | |
skip_weighting (`bool`, *optional*, defaults to `False`): | |
Skip the weighting. When the parsing is skipped, it is forced True. | |
""" | |
max_length = (pipe.tokenizer.model_max_length | |
- 2) * max_embeddings_multiples + 2 | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
if not skip_parsing: | |
prompt_tokens, prompt_weights = get_prompts_with_weights( | |
pipe, prompt, max_length - 2) | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens, uncond_weights = get_prompts_with_weights( | |
pipe, uncond_prompt, max_length - 2) | |
else: | |
prompt_tokens = [ | |
token[1:-1] for token in pipe.tokenizer( | |
prompt, max_length=max_length, truncation=True).input_ids | |
] | |
prompt_weights = [[1.0] * len(token) for token in prompt_tokens] | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens = [ | |
token[1:-1] for token in pipe.tokenizer( | |
uncond_prompt, max_length=max_length, | |
truncation=True).input_ids | |
] | |
uncond_weights = [[1.0] * len(token) for token in uncond_tokens] | |
# round up the longest length of tokens to a multiple of (model_max_length - 2) | |
max_length = max([len(token) for token in prompt_tokens]) | |
if uncond_prompt is not None: | |
max_length = max(max_length, | |
max([len(token) for token in uncond_tokens])) | |
max_embeddings_multiples = min( | |
max_embeddings_multiples, | |
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, | |
) | |
max_embeddings_multiples = max(1, max_embeddings_multiples) | |
max_length = (pipe.tokenizer.model_max_length | |
- 2) * max_embeddings_multiples + 2 | |
# pad the length of tokens and weights | |
bos = pipe.tokenizer.bos_token_id | |
eos = pipe.tokenizer.eos_token_id | |
pad = getattr(pipe.tokenizer, 'pad_token_id', eos) | |
prompt_tokens, prompt_weights = pad_tokens_and_weights( | |
prompt_tokens, | |
prompt_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
prompt_tokens = torch.tensor( | |
prompt_tokens, dtype=torch.long, device=pipe.device) | |
if uncond_prompt is not None: | |
uncond_tokens, uncond_weights = pad_tokens_and_weights( | |
uncond_tokens, | |
uncond_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
uncond_tokens = torch.tensor( | |
uncond_tokens, dtype=torch.long, device=pipe.device) | |
# get the embeddings | |
text_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
prompt_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
prompt_weights = torch.tensor( | |
prompt_weights, | |
dtype=text_embeddings.dtype, | |
device=text_embeddings.device) | |
if uncond_prompt is not None: | |
uncond_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
uncond_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
uncond_weights = torch.tensor( | |
uncond_weights, | |
dtype=uncond_embeddings.dtype, | |
device=uncond_embeddings.device) | |
# assign weights to the prompts and normalize in the sense of mean | |
# TODO: should we normalize by chunk or in a whole (current implementation)? | |
if (not skip_parsing) and (not skip_weighting): | |
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to( | |
text_embeddings.dtype) | |
text_embeddings *= prompt_weights.unsqueeze(-1) | |
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to( | |
text_embeddings.dtype) | |
text_embeddings *= (previous_mean | |
/ current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to( | |
uncond_embeddings.dtype) | |
uncond_embeddings *= uncond_weights.unsqueeze(-1) | |
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to( | |
uncond_embeddings.dtype) | |
uncond_embeddings *= (previous_mean | |
/ current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
return text_embeddings, uncond_embeddings | |
return text_embeddings, None | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std( | |
dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + ( | |
1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
def prepare_image(image): | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
image = image.unsqueeze(0) | |
image = image.to(dtype=torch.float32) | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
return image | |
class StableDiffusionImage2PanoPipeline(DiffusionPipeline, TextualInversionLoaderMixin): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
In addition the pipeline inherits the following loading methods: | |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets | |
as a list, the outputs from each ControlNet are added together to create one combined additional | |
conditioning. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
if isinstance(controlnet, (list, tuple)): | |
controlnet = MultiControlNetModel(controlnet) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. | |
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]: | |
cpu_offload(cpu_offloaded_model, device) | |
if self.safety_checker is not None: | |
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
if self.safety_checker is not None: | |
# the safety checker can offload the vae again | |
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
# control net hook has be manually offloaded as it alternates with unet | |
cpu_offload_with_hook(self.controlnet, device) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
max_embeddings_multiples=3, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
""" | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if negative_prompt_embeds is None: | |
if negative_prompt is None: | |
negative_prompt = [""] * batch_size | |
elif isinstance(negative_prompt, str): | |
negative_prompt = [negative_prompt] * batch_size | |
if batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
if prompt_embeds is None or negative_prompt_embeds is None: | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer) | |
prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings( | |
pipe=self, | |
prompt=prompt, | |
uncond_prompt=negative_prompt if do_classifier_free_guidance else None, | |
max_embeddings_multiples=max_embeddings_multiples, | |
) | |
if prompt_embeds is None: | |
prompt_embeds = prompt_embeds1 | |
if negative_prompt_embeds is None: | |
negative_prompt_embeds = negative_prompt_embeds1 | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
bs_embed, seq_len, _ = negative_prompt_embeds.shape | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
warnings.warn( | |
"The decode_latents method is deprecated and will be removed in a future version. Please" | |
" use VaeImageProcessor instead", | |
FutureWarning, | |
) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
image, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
controlnet_conditioning_scale=1.0, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# `prompt` needs more sophisticated handling when there are multiple | |
# conditionings. | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if isinstance(prompt, list): | |
logger.warning( | |
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" | |
" prompts. The conditionings will be fixed across the prompts." | |
) | |
# Check `image` | |
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
) | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
self.check_image(image, prompt, prompt_embeds) | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if not isinstance(image, list): | |
raise TypeError("For multiple controlnets: `image` must be type `list`") | |
# When `image` is a nested list: | |
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
elif any(isinstance(i, list) for i in image): | |
raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
elif len(image) != len(self.controlnet.nets): | |
raise ValueError( | |
"For multiple controlnets: `image` must have the same length as the number of controlnets." | |
) | |
for image_ in image: | |
self.check_image(image_, prompt, prompt_embeds) | |
else: | |
assert False | |
# Check `controlnet_conditioning_scale` | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
if not isinstance(controlnet_conditioning_scale, float): | |
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if isinstance(controlnet_conditioning_scale, list): | |
if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
self.controlnet.nets | |
): | |
raise ValueError( | |
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
" the same length as the number of controlnets" | |
) | |
else: | |
assert False | |
def check_image(self, image, prompt, prompt_embeds): | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list: | |
raise TypeError( | |
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
elif image_is_tensor: | |
image_batch_size = image.shape[0] | |
elif image_is_pil_list: | |
image_batch_size = len(image) | |
elif image_is_tensor_list: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image | |
def prepare_control_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
if not isinstance(image, torch.Tensor): | |
if isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
images = [] | |
for image_ in image: | |
image_ = image_.convert("RGB") | |
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
image_ = np.array(image_) | |
image_ = image_[None, :] | |
images.append(image_) | |
image = images | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents | |
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
init_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
return latents | |
def _default_height_width(self, height, width, image): | |
# NOTE: It is possible that a list of images have different | |
# dimensions for each image, so just checking the first image | |
# is not _exactly_ correct, but it is simple. | |
while isinstance(image, list): | |
image = image[0] | |
if height is None: | |
if isinstance(image, PIL.Image.Image): | |
height = image.height | |
elif isinstance(image, torch.Tensor): | |
height = image.shape[2] | |
height = (height // 8) * 8 # round down to nearest multiple of 8 | |
if width is None: | |
if isinstance(image, PIL.Image.Image): | |
width = image.width | |
elif isinstance(image, torch.Tensor): | |
width = image.shape[3] | |
width = (width // 8) * 8 # round down to nearest multiple of 8 | |
return height, width | |
# override DiffusionPipeline | |
def save_pretrained( | |
self, | |
save_directory: Union[str, os.PathLike], | |
safe_serialization: bool = False, | |
variant: Optional[str] = None, | |
): | |
if isinstance(self.controlnet, ControlNetModel): | |
super().save_pretrained(save_directory, safe_serialization, variant) | |
else: | |
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.") | |
def denoise_latents(self, latents, t, prompt_embeds, control_image, controlnet_conditioning_scale, guess_mode, cross_attention_kwargs, do_classifier_free_guidance, guidance_scale, extra_step_kwargs, views_scheduler_status): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
self.scheduler.__dict__.update(views_scheduler_status[0]) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
controlnet_latent_model_input = latents | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
controlnet_latent_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
controlnet_latent_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=control_image, | |
conditioning_scale=controlnet_conditioning_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
return latents | |
def blend_v(self, a, b, blend_extent): | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) | |
return b | |
def blend_h(self, a, b, blend_extent): | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) | |
return b | |
def get_blocks(self, latents, control_image, tile_latent_min_size, overlap_size): | |
rows_latents = [] | |
rows_control_images = [] | |
for i in range(0, latents.shape[2] - overlap_size, overlap_size): | |
row_latents = [] | |
row_control_images = [] | |
for j in range(0, latents.shape[3] - overlap_size, overlap_size): | |
latents_input = latents[:, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size] | |
control_image_input = control_image[:, :, | |
self.vae_scale_factor * i: self.vae_scale_factor * (i + tile_latent_min_size), | |
self.vae_scale_factor * j: self.vae_scale_factor * (j + tile_latent_min_size)] | |
row_latents.append(latents_input) | |
row_control_images.append(control_image_input) | |
rows_latents.append(row_latents) | |
rows_control_images.append(row_control_images) | |
return rows_latents, rows_control_images | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None, | |
control_image: Union[ | |
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image] | |
] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 0.8, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 0.8, | |
guess_mode: bool = False, | |
mask: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, | |
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`): | |
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If | |
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can | |
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If | |
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are | |
specified in init, images must be passed as a list such that each element of the list can be correctly | |
batched for input to a single controlnet. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the | |
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting | |
than for [`~StableDiffusionControlNetPipeline.__call__`]. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if | |
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
def controlnet_forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
controlnet_cond: torch.FloatTensor, | |
conditioning_scale: float = 1.0, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guess_mode: bool = False, | |
return_dict: bool = True, | |
mask: Optional[torch.FloatTensor] = None, | |
) -> Union[ControlNetOutput, Tuple]: | |
""" | |
The [`ControlNetModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor. | |
timestep (`Union[torch.Tensor, float, int]`): | |
The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.Tensor`): | |
The encoder hidden states. | |
controlnet_cond (`torch.FloatTensor`): | |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
conditioning_scale (`float`, defaults to `1.0`): | |
The scale factor for ControlNet outputs. | |
class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
added_cond_kwargs (`dict`): | |
Additional conditions for the Stable Diffusion XL UNet. | |
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): | |
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
guess_mode (`bool`, defaults to `False`): | |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
return_dict (`bool`, defaults to `True`): | |
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: | |
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
returned where the first element is the sample tensor. | |
""" | |
# check channel order | |
channel_order = self.config.controlnet_conditioning_channel_order | |
if channel_order == "rgb": | |
# in rgb order by default | |
... | |
elif channel_order == "bgr": | |
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
else: | |
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
if self.config.addition_embed_type is not None: | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_time": | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
if mask is not None: | |
sample = (1 - mask.to(sample.dtype)) * sample + mask.to(sample.dtype) * controlnet_cond | |
else: | |
sample = sample + controlnet_cond | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
# 5. Control net blocks | |
controlnet_down_block_res_samples = () | |
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
down_block_res_sample = controlnet_block(down_block_res_sample) | |
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = controlnet_down_block_res_samples | |
mid_block_res_sample = self.controlnet_mid_block(sample) | |
# 6. scaling | |
if guess_mode and not self.config.global_pool_conditions: | |
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 | |
scales = scales * conditioning_scale | |
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] | |
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
else: | |
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
if self.config.global_pool_conditions: | |
down_block_res_samples = [ | |
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples | |
] | |
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) | |
if not return_dict: | |
return (down_block_res_samples, mid_block_res_sample) | |
return ControlNetOutput( | |
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
) | |
self.controlnet.forward = controlnet_forward.__get__(self.controlnet, ControlNetModel) | |
def tiled_decode( | |
self, | |
z: torch.FloatTensor, | |
return_dict: bool = True | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r"""Decode a batch of images using a tiled decoder. | |
Args: | |
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several | |
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled | |
decoding is: different from non-tiled decoding due to each tile using a different decoder. | |
To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. | |
You may still see tile-sized changes in the look of the output, but they should be much less noticeable. | |
z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to | |
`True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
_tile_overlap_factor = 1 - self.tile_overlap_factor | |
overlap_size = int(self.tile_latent_min_size | |
* _tile_overlap_factor) | |
blend_extent = int(self.tile_sample_min_size | |
* self.tile_overlap_factor) | |
row_limit = self.tile_sample_min_size - blend_extent | |
w = z.shape[3] | |
z = torch.cat([z, z[:, :, :, :w // 4]], dim=-1) | |
# Split z into overlapping 64x64 tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, z.shape[2], overlap_size): | |
row = [] | |
tile = z[:, :, i:i + self.tile_latent_min_size, :] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile) | |
vae_scale_factor = decoded.shape[-1] // tile.shape[-1] | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append( | |
self.blend_h( | |
tile[:, :, :row_limit, w * vae_scale_factor:], | |
tile[:, :, :row_limit, :w * vae_scale_factor], | |
tile.shape[-1] - w * vae_scale_factor)) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
dec = torch.cat(result_rows, dim=2) | |
if not return_dict: | |
return (dec, ) | |
return DecoderOutput(sample=dec) | |
self.vae.tiled_decode = tiled_decode.__get__(self.vae, AutoencoderKL) | |
# 0. Default height and width to unet | |
height, width = self._default_height_width(height, width, image) | |
self.blend_extend = width // self.vae_scale_factor // 32 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
control_image, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
controlnet_conditioning_scale, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
self.controlnet.to(device) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# 4. Prepare image, and controlnet_conditioning_image | |
image = prepare_image(image) | |
# 5. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
control_image = self.prepare_control_image( | |
image=control_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
elif isinstance(controlnet, MultiControlNetModel): | |
control_images = [] | |
for control_image_ in control_image: | |
control_image_ = self.prepare_control_image( | |
image=control_image_, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
control_images.append(control_image_) | |
control_image = control_images | |
else: | |
assert False | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 6. Prepare latent variables | |
latents = self.prepare_latents( | |
image, | |
latent_timestep, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
) | |
if mask is not None: | |
mask = torch.cat([mask] * batch_size, dim=0) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] | |
# value = torch.zeros_like(latents) | |
latents = torch.cat([latents, latents[:, :, :, :self.blend_extend]], dim=-1) | |
control_image = torch.cat([control_image, control_image[:, :, :, :self.blend_extend * self.vae_scale_factor]], dim=-1) | |
if mask is not None: | |
mask = torch.cat([mask] * batch_size, dim=0) | |
mask = torch.cat([mask, mask[:, :, :, :self.blend_extend]], dim=-1) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if mask is not None: | |
mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
else: | |
mask_input = None | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
controlnet_latent_model_input = latents | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
controlnet_latent_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
controlnet_latent_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=control_image, | |
conditioning_scale=controlnet_conditioning_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
mask=mask_input, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# latents = value + 0.0 | |
latents = self.blend_h(latents, latents, self.blend_extend) | |
latents = self.blend_h(latents, latents, self.blend_extend) | |
latents = latents[:, :, :, :width // self.vae_scale_factor] | |
# If we do sequential model offloading, let's offload unet and controlnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.controlnet.to("cpu") | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |