Spaces:
Running
on
Zero
Running
on
Zero
# import os | |
import spaces | |
import time | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from dataclasses import dataclass | |
import math | |
from typing import Callable | |
from tqdm import tqdm | |
import bitsandbytes as bnb | |
from bitsandbytes.nn.modules import Params4bit, QuantState | |
import torch | |
import random | |
from einops import rearrange, repeat | |
from diffusers import AutoencoderKL | |
from torch import Tensor, nn | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from transformers import T5EncoderModel, T5Tokenizer | |
# from optimum.quanto import freeze, qfloat8, quantize | |
from transformers import pipeline | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
# ---------------- Encoders ---------------- | |
class HFEmbedder(nn.Module): | |
def __init__(self, version: str, max_length: int, **hf_kwargs): | |
super().__init__() | |
self.is_clip = version.startswith("openai") | |
self.max_length = max_length | |
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | |
if self.is_clip: | |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) | |
else: | |
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) | |
self.hf_module = self.hf_module.eval().requires_grad_(False) | |
def forward(self, text: list[str]) -> Tensor: | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=False, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
outputs = self.hf_module( | |
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
attention_mask=None, | |
output_hidden_states=False, | |
) | |
return outputs[self.output_key] | |
device = "cuda" | |
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device) | |
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) | |
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device) | |
# quantize(t5, weights=qfloat8) | |
# freeze(t5) | |
# ---------------- NF4 ---------------- | |
def functional_linear_4bits(x, weight, bias): | |
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state) | |
out = out.to(x) | |
return out | |
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState: | |
if state is None: | |
return None | |
device = device or state.absmax.device | |
state2 = ( | |
QuantState( | |
absmax=state.state2.absmax.to(device), | |
shape=state.state2.shape, | |
code=state.state2.code.to(device), | |
blocksize=state.state2.blocksize, | |
quant_type=state.state2.quant_type, | |
dtype=state.state2.dtype, | |
) | |
if state.nested | |
else None | |
) | |
return QuantState( | |
absmax=state.absmax.to(device), | |
shape=state.shape, | |
code=state.code.to(device), | |
blocksize=state.blocksize, | |
quant_type=state.quant_type, | |
dtype=state.dtype, | |
offset=state.offset.to(device) if state.nested else None, | |
state2=state2, | |
) | |
class ForgeParams4bit(Params4bit): | |
def to(self, *args, **kwargs): | |
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) | |
if device is not None and device.type == "cuda" and not self.bnb_quantized: | |
return self._quantize(device) | |
else: | |
n = ForgeParams4bit( | |
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking), | |
requires_grad=self.requires_grad, | |
quant_state=copy_quant_state(self.quant_state, device), | |
# blocksize=self.blocksize, | |
# compress_statistics=self.compress_statistics, | |
compress_statistics=False, | |
blocksize=64, | |
quant_type=self.quant_type, | |
quant_storage=self.quant_storage, | |
bnb_quantized=self.bnb_quantized, | |
module=self.module | |
) | |
self.module.quant_state = n.quant_state | |
self.data = n.data | |
self.quant_state = n.quant_state | |
return n | |
class ForgeLoader4Bit(torch.nn.Module): | |
def __init__(self, *, device, dtype, quant_type, **kwargs): | |
super().__init__() | |
self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype)) | |
self.weight = None | |
self.quant_state = None | |
self.bias = None | |
self.quant_type = quant_type | |
def _save_to_state_dict(self, destination, prefix, keep_vars): | |
super()._save_to_state_dict(destination, prefix, keep_vars) | |
quant_state = getattr(self.weight, "quant_state", None) | |
if quant_state is not None: | |
for k, v in quant_state.as_dict(packed=True).items(): | |
destination[prefix + "weight." + k] = v if keep_vars else v.detach() | |
return | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): | |
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")} | |
if any('bitsandbytes' in k for k in quant_state_keys): | |
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys} | |
self.weight = ForgeParams4bit.from_prequantized( | |
data=state_dict[prefix + 'weight'], | |
quantized_stats=quant_state_dict, | |
requires_grad=False, | |
# device=self.dummy.device, | |
device=torch.device('cuda'), | |
module=self | |
) | |
self.quant_state = self.weight.quant_state | |
if prefix + 'bias' in state_dict: | |
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) | |
del self.dummy | |
elif hasattr(self, 'dummy'): | |
if prefix + 'weight' in state_dict: | |
self.weight = ForgeParams4bit( | |
state_dict[prefix + 'weight'].to(self.dummy), | |
requires_grad=False, | |
compress_statistics=True, | |
quant_type=self.quant_type, | |
quant_storage=torch.uint8, | |
module=self, | |
) | |
self.quant_state = self.weight.quant_state | |
if prefix + 'bias' in state_dict: | |
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) | |
del self.dummy | |
else: | |
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) | |
class Linear(ForgeLoader4Bit): | |
def __init__(self, *args, device=None, dtype=None, **kwargs): | |
super().__init__(device=device, dtype=dtype, quant_type='nf4') | |
def forward(self, x): | |
self.weight.quant_state = self.quant_state | |
if self.bias is not None and self.bias.dtype != x.dtype: | |
# Maybe this can also be set to all non-bnb ops since the cost is very low. | |
# And it only invokes one time, and most linear does not have bias | |
self.bias.data = self.bias.data.to(x.dtype) | |
return functional_linear_4bits(x, self.weight, self.bias) | |
nn.Linear = Linear | |
# ---------------- Model ---------------- | |
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: | |
q, k = apply_rope(q, k, pe) | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
# x = rearrange(x, "B H L D -> B L (H D)") | |
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1) | |
return x | |
def rope(pos, dim, theta): | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta ** scale) | |
# out = torch.einsum("...n,d->...nd", pos, omega) | |
out = pos.unsqueeze(-1) * omega.unsqueeze(0) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
b, n, d, _ = out.shape | |
out = out.view(b, n, d, 2, 2) | |
return out.float() | |
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: Tensor) -> Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes: | |
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) | |
# Block CUDA steam, but consistent with official codes: | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(dim)) | |
def forward(self, x: Tensor): | |
x_dtype = x.dtype | |
x = x.float() | |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
return (x * rrms).to(dtype=x_dtype) * self.scale | |
class QKNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
class SelfAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = qkv.shape | |
qkv = qkv.view(B, L, 3, self.num_heads, -1) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
class Modulation(nn.Module): | |
def __init__(self, dim: int, double: bool): | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
return ( | |
ModulationOut(*out[:3]), | |
ModulationOut(*out[3:]) if self.is_double else None, | |
) | |
class DoubleStreamBlock(nn.Module): | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = img_qkv.shape | |
H = self.num_heads | |
D = img_qkv.shape[-1] // (3 * H) | |
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = txt_qkv.shape | |
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
q = torch.cat((txt_q, img_q), dim=2) | |
k = torch.cat((txt_k, img_k), dim=2) | |
v = torch.cat((txt_v, img_v), dim=2) | |
attn = attention(q, k, v, pe=pe) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img bloks | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
# calculate the txt bloks | |
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
return img, txt | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: float | None = None, | |
): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
return x + mod.gate * output | |
class LastLayer(nn.Module): | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x: Tensor, vec: Tensor) -> Tensor: | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |
class FluxParams: | |
in_channels: int = 64 | |
vec_in_dim: int = 768 | |
context_in_dim: int = 4096 | |
hidden_size: int = 3072 | |
mlp_ratio: float = 4.0 | |
num_heads: int = 24 | |
depth: int = 19 | |
depth_single_blocks: int = 38 | |
axes_dim: list = [16, 56, 56] | |
theta: int = 10_000 | |
qkv_bias: bool = True | |
guidance_embed: bool = True | |
class Flux(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, params = FluxParams()): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
) | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor | None = None, | |
) -> Tensor: | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
for block in self.double_blocks: | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
img = torch.cat((txt, img), 1) | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | |
bs, c, h, w = img.shape | |
if bs == 1 and not isinstance(prompt, str): | |
bs = len(prompt) | |
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
if img.shape[0] == 1 and bs > 1: | |
img = repeat(img, "1 ... -> bs ...", bs=bs) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
txt = t5(prompt) | |
if txt.shape[0] == 1 and bs > 1: | |
txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
vec = clip(prompt) | |
if vec.shape[0] == 1 and bs > 1: | |
vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
return { | |
"img": img, | |
"img_ids": img_ids.to(img.device), | |
"txt": txt.to(img.device), | |
"txt_ids": txt_ids.to(img.device), | |
"vec": vec.to(img.device), | |
} | |
def time_shift(mu: float, sigma: float, t: Tensor): | |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
def get_lin_function( | |
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | |
) -> Callable[[float], float]: | |
m = (y2 - y1) / (x2 - x1) | |
b = y1 - m * x1 | |
return lambda x: m * x + b | |
def get_schedule( | |
num_steps: int, | |
image_seq_len: int, | |
base_shift: float = 0.5, | |
max_shift: float = 1.15, | |
shift: bool = True, | |
) -> list[float]: | |
# extra step for zero | |
timesteps = torch.linspace(1, 0, num_steps + 1) | |
# shifting the schedule to favor high timesteps for higher signal images | |
if shift: | |
# eastimate mu based on linear estimation between two points | |
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | |
timesteps = time_shift(mu, 1.0, timesteps) | |
return timesteps.tolist() | |
def denoise( | |
model: Flux, | |
# model input | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
vec: Tensor, | |
# sampling parameters | |
timesteps: list[float], | |
guidance: float = 4.0, | |
): | |
# this is ignored for schnell | |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1): | |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
pred = model( | |
img=img, | |
img_ids=img_ids, | |
txt=txt, | |
txt_ids=txt_ids, | |
y=vec, | |
timesteps=t_vec, | |
guidance=guidance_vec, | |
) | |
img = img + (t_prev - t_curr) * pred | |
return img | |
def unpack(x: Tensor, height: int, width: int) -> Tensor: | |
return rearrange( | |
x, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=math.ceil(height / 16), | |
w=math.ceil(width / 16), | |
ph=2, | |
pw=2, | |
) | |
class SamplingOptions: | |
prompt: str | |
width: int | |
height: int | |
guidance: float | |
seed: int | None | |
def get_image(image) -> torch.Tensor | None: | |
if image is None: | |
return None | |
image = Image.fromarray(image).convert("RGB") | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Lambda(lambda x: 2.0 * x - 1.0), | |
]) | |
img: torch.Tensor = transform(image) | |
return img[None, ...] | |
# ---------------- Demo ---------------- | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors")) | |
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k} | |
model = Flux().to(dtype=torch.bfloat16, device="cuda") | |
result = model.load_state_dict(sd) | |
model_zero_init = False | |
# model = Flux().to(dtype=torch.bfloat16, device="cuda") | |
# result = model.load_state_dict(load_file("/storage/dev/nyanko/flux-dev/flux1-dev.sft")) | |
def generate_image( | |
prompt, width, height, guidance, inference_steps, seed, | |
do_img2img, init_image, image2image_strength, resize_img, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
translated_prompt = prompt | |
if any('\u3131' <= c <= '\u318E' or '\uAC00' <= c <= '\uD7A3' for c in prompt): | |
translated_prompt = translator(prompt, max_length=512)[0]['translation_text'] | |
print(f"Translated prompt: {translated_prompt}") | |
prompt = translated_prompt | |
if seed == 0: | |
seed = int(random.random() * 1000000) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_device = torch.device(device) | |
global model, model_zero_init | |
if not model_zero_init: | |
model = model.to(torch_device) | |
model_zero_init = True | |
if do_img2img and init_image is not None: | |
init_image = get_image(init_image) | |
if resize_img: | |
init_image = torch.nn.functional.interpolate(init_image, (height, width)) | |
else: | |
h, w = init_image.shape[-2:] | |
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)] | |
height = init_image.shape[-2] | |
width = init_image.shape[-1] | |
init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample() | |
init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor | |
generator = torch.Generator(device=device).manual_seed(seed) | |
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator) | |
num_steps = inference_steps | |
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True) | |
if do_img2img and init_image is not None: | |
t_idx = int((1 - image2image_strength) * num_steps) | |
t = timesteps[t_idx] | |
timesteps = timesteps[t_idx:] | |
x = t * x + (1.0 - t) * init_image.to(x.dtype) | |
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt) | |
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance) | |
# with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof: | |
# print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20)) | |
x = unpack(x.float(), height, width) | |
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): | |
x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor | |
x = ae.decode(x).sample | |
x = x.clamp(-1, 1) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
return img, seed, translated_prompt | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
def create_demo(): | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt(한글 가능)", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture") | |
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360) | |
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768) | |
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5) | |
inference_steps = gr.Slider( | |
label="Inference steps", | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=30, | |
) | |
seed = gr.Number(label="Seed", precision=-1) | |
do_img2img = gr.Checkbox(label="Image to Image", value=False) | |
init_image = gr.Image(label="Input Image", visible=False) | |
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False) | |
resize_img = gr.Checkbox(label="Resize image", value=True, visible=False) | |
generate_button = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
output_seed = gr.Text(label="Used Seed") | |
do_img2img.change( | |
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)], | |
inputs=[do_img2img], | |
outputs=[init_image, image2image_strength, resize_img] | |
) | |
generate_button.click( | |
fn=generate_image, | |
inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img], | |
outputs=[output_image, output_seed] | |
) | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
return demo | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.launch() |