""" Code adapted from: https://github.com/akanazawa/hmr/blob/master/src/benchmark/eval_util.py """ import torch import numpy as np from typing import Optional, Dict, List, Tuple def compute_similarity_transform(S1: torch.Tensor, S2: torch.Tensor) -> torch.Tensor: """ Computes a similarity transform (sR, t) in a batched way that takes a set of 3D points S1 (B, N, 3) closest to a set of 3D points S2 (B, N, 3), where R is a 3x3 rotation matrix, t 3x1 translation, s scale. i.e. solves the orthogonal Procrutes problem. Args: S1 (torch.Tensor): First set of points of shape (B, N, 3). S2 (torch.Tensor): Second set of points of shape (B, N, 3). Returns: (torch.Tensor): The first set of points after applying the similarity transformation. """ batch_size = S1.shape[0] S1 = S1.permute(0, 2, 1) S2 = S2.permute(0, 2, 1) # 1. Remove mean. mu1 = S1.mean(dim=2, keepdim=True) mu2 = S2.mean(dim=2, keepdim=True) X1 = S1 - mu1 X2 = S2 - mu2 # 2. Compute variance of X1 used for scale. var1 = (X1**2).sum(dim=(1,2)) # 3. The outer product of X1 and X2. K = torch.matmul(X1, X2.permute(0, 2, 1)) # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K. U, s, V = torch.svd(K) Vh = V.permute(0, 2, 1) # Construct Z that fixes the orientation of R to get det(R)=1. Z = torch.eye(U.shape[1], device=U.device).unsqueeze(0).repeat(batch_size, 1, 1) Z[:, -1, -1] *= torch.sign(torch.linalg.det(torch.matmul(U, Vh))) # Construct R. R = torch.matmul(torch.matmul(V, Z), U.permute(0, 2, 1)) # 5. Recover scale. trace = torch.matmul(R, K).diagonal(offset=0, dim1=-1, dim2=-2).sum(dim=-1) scale = (trace / var1).unsqueeze(dim=-1).unsqueeze(dim=-1) # 6. Recover translation. t = mu2 - scale*torch.matmul(R, mu1) # 7. Error: S1_hat = scale*torch.matmul(R, S1) + t return S1_hat.permute(0, 2, 1) def reconstruction_error(S1, S2) -> np.array: """ Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment. Args: S1 (torch.Tensor): First set of points of shape (B, N, 3). S2 (torch.Tensor): Second set of points of shape (B, N, 3). Returns: (np.array): Reconstruction error. """ S1_hat = compute_similarity_transform(S1, S2) re = torch.sqrt( ((S1_hat - S2)** 2).sum(dim=-1)).mean(dim=-1) return re def eval_pose(pred_joints, gt_joints) -> Tuple[np.array, np.array]: """ Compute joint errors in mm before and after Procrustes alignment. Args: pred_joints (torch.Tensor): Predicted 3D joints of shape (B, N, 3). gt_joints (torch.Tensor): Ground truth 3D joints of shape (B, N, 3). Returns: Tuple[np.array, np.array]: Joint errors in mm before and after alignment. """ # Absolute error (MPJPE) mpjpe = torch.sqrt(((pred_joints - gt_joints) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() # Reconstruction_error r_error = reconstruction_error(pred_joints, gt_joints).cpu().numpy() return 1000 * mpjpe, 1000 * r_error class Evaluator: def __init__(self, dataset_length: int, keypoint_list: List, pelvis_ind: int, metrics: List = ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re'], pck_thresholds: Optional[List] = None): """ Class used for evaluating trained models on different 3D pose datasets. Args: dataset_length (int): Total dataset length. keypoint_list [List]: List of keypoints used for evaluation. pelvis_ind (int): Index of pelvis keypoint; used for aligning the predictions and ground truth. metrics [List]: List of evaluation metrics to record. """ self.dataset_length = dataset_length self.keypoint_list = keypoint_list self.pelvis_ind = pelvis_ind self.metrics = metrics for metric in self.metrics: setattr(self, metric, np.zeros((dataset_length,))) self.counter = 0 if pck_thresholds is None: self.pck_evaluator = None else: self.pck_evaluator = EvaluatorPCK(pck_thresholds) def log(self): """ Print current evaluation metrics """ if self.counter == 0: print('Evaluation has not started') return print(f'{self.counter} / {self.dataset_length} samples') if self.pck_evaluator is not None: self.pck_evaluator.log() for metric in self.metrics: if metric in ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re']: unit = 'mm' else: unit = '' print(f'{metric}: {getattr(self, metric)[:self.counter].mean()} {unit}') print('***') def get_metrics_dict(self) -> Dict: """ Returns: Dict: Dictionary of evaluation metrics. """ d1 = {metric: getattr(self, metric)[:self.counter].mean() for metric in self.metrics} if self.pck_evaluator is not None: d2 = self.pck_evaluator.get_metrics_dict() d1.update(d2) return d1 def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None): """ Evaluate current batch. Args: output (Dict): Regression output. batch (Dict): Dictionary containing images and their corresponding annotations. opt_output (Dict): Optimization output. """ if self.pck_evaluator is not None: self.pck_evaluator(output, batch, opt_output) pred_keypoints_3d = output['pred_keypoints_3d'].detach() pred_keypoints_3d = pred_keypoints_3d[:,None,:,:] batch_size = pred_keypoints_3d.shape[0] num_samples = pred_keypoints_3d.shape[1] gt_keypoints_3d = batch['keypoints_3d'][:, :, :-1].unsqueeze(1).repeat(1, num_samples, 1, 1) # Align predictions and ground truth such that the pelvis location is at the origin pred_keypoints_3d -= pred_keypoints_3d[:, :, [self.pelvis_ind]] gt_keypoints_3d -= gt_keypoints_3d[:, :, [self.pelvis_ind]] # Compute joint errors mpjpe, re = eval_pose(pred_keypoints_3d.reshape(batch_size * num_samples, -1, 3)[:, self.keypoint_list], gt_keypoints_3d.reshape(batch_size * num_samples, -1 ,3)[:, self.keypoint_list]) mpjpe = mpjpe.reshape(batch_size, num_samples) re = re.reshape(batch_size, num_samples) # Compute 2d keypoint errors pred_keypoints_2d = output['pred_keypoints_2d'].detach() pred_keypoints_2d = pred_keypoints_2d[:,None,:,:] gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1) conf = gt_keypoints_2d[:, :, :, -1].clone() kp_err = torch.nn.functional.mse_loss( pred_keypoints_2d, gt_keypoints_2d[:, :, :, :-1], reduction='none' ).sum(dim=3) kp_l2_loss = (conf * kp_err).mean(dim=2) kp_l2_loss = kp_l2_loss.detach().cpu().numpy() # Compute joint errors after optimization, if available. if opt_output is not None: opt_keypoints_3d = opt_output['model_joints'] opt_keypoints_3d -= opt_keypoints_3d[:, [self.pelvis_ind]] opt_mpjpe, opt_re = eval_pose(opt_keypoints_3d[:, self.keypoint_list], gt_keypoints_3d[:, 0, self.keypoint_list]) # The 0-th sample always corresponds to the mode if hasattr(self, 'mode_mpjpe'): mode_mpjpe = mpjpe[:, 0] self.mode_mpjpe[self.counter:self.counter+batch_size] = mode_mpjpe if hasattr(self, 'mode_re'): mode_re = re[:, 0] self.mode_re[self.counter:self.counter+batch_size] = mode_re if hasattr(self, 'mode_kpl2'): mode_kpl2 = kp_l2_loss[:, 0] self.mode_kpl2[self.counter:self.counter+batch_size] = mode_kpl2 if hasattr(self, 'min_mpjpe'): min_mpjpe = mpjpe.min(axis=-1) self.min_mpjpe[self.counter:self.counter+batch_size] = min_mpjpe if hasattr(self, 'min_re'): min_re = re.min(axis=-1) self.min_re[self.counter:self.counter+batch_size] = min_re if hasattr(self, 'min_kpl2'): min_kpl2 = kp_l2_loss.min(axis=-1) self.min_kpl2[self.counter:self.counter+batch_size] = min_kpl2 if hasattr(self, 'opt_mpjpe'): self.opt_mpjpe[self.counter:self.counter+batch_size] = opt_mpjpe if hasattr(self, 'opt_re'): self.opt_re[self.counter:self.counter+batch_size] = opt_re self.counter += batch_size if hasattr(self, 'mode_mpjpe') and hasattr(self, 'mode_re'): return { 'mode_mpjpe': mode_mpjpe, 'mode_re': mode_re, } else: return {} class EvaluatorPCK: def __init__(self, thresholds: List = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5],): """ Class used for evaluating trained models on different 3D pose datasets. Args: thresholds [List]: List of PCK thresholds to evaluate. metrics [List]: List of evaluation metrics to record. """ self.thresholds = thresholds self.pred_kp_2d = [] self.gt_kp_2d = [] self.gt_conf_2d = [] self.counter = 0 def log(self): """ Print current evaluation metrics """ if self.counter == 0: print('Evaluation has not started') return print(f'{self.counter} samples') metrics_dict = self.get_metrics_dict() for metric in metrics_dict: print(f'{metric}: {metrics_dict[metric]}') print('***') def get_metrics_dict(self) -> Dict: """ Returns: Dict: Dictionary of evaluation metrics. """ pcks = self.compute_pcks() metrics = {} for thr, (acc,avg_acc,cnt) in zip(self.thresholds, pcks): metrics.update({f'kp{i}_pck_{thr}': float(a) for i, a in enumerate(acc) if a>=0}) metrics.update({f'kpAvg_pck_{thr}': float(avg_acc)}) return metrics def compute_pcks(self): pred_kp_2d = np.concatenate(self.pred_kp_2d, axis=0) gt_kp_2d = np.concatenate(self.gt_kp_2d, axis=0) gt_conf_2d = np.concatenate(self.gt_conf_2d, axis=0) assert pred_kp_2d.shape == gt_kp_2d.shape assert pred_kp_2d[..., 0].shape == gt_conf_2d.shape assert pred_kp_2d.shape[1] == 1 # num_samples from mmpose.core.evaluation import keypoint_pck_accuracy pcks = [ keypoint_pck_accuracy( pred_kp_2d[:, 0, :, :], gt_kp_2d[:, 0, :, :], gt_conf_2d[:, 0, :]>0.5, thr=thr, normalize = np.ones((len(pred_kp_2d),2)) # Already in [-0.5,0.5] range. No need to normalize ) for thr in self.thresholds ] return pcks def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None): """ Evaluate current batch. Args: output (Dict): Regression output. batch (Dict): Dictionary containing images and their corresponding annotations. opt_output (Dict): Optimization output. """ pred_keypoints_2d = output['pred_keypoints_2d'].detach() num_samples = 1 batch_size = pred_keypoints_2d.shape[0] pred_keypoints_2d = pred_keypoints_2d[:,None,:,:] gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1) self.pred_kp_2d.append(pred_keypoints_2d[:, :, :, :2].detach().cpu().numpy()) self.gt_conf_2d.append(gt_keypoints_2d[:, :, :, -1].detach().cpu().numpy()) self.gt_kp_2d.append(gt_keypoints_2d[:, :, :, :2].detach().cpu().numpy()) self.counter += batch_size