Spaces:
Runtime error
Runtime error
File size: 8,662 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
"""Ask a question to the netspresso database."""
import json
import sys
import argparse
from typing import List
from langchain.chat_models import ChatOpenAI # for `gpt-3.5-turbo` & `gpt-4`
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.prompts import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import BaseRetriever, Document
import gradio as gr
from search_online import OnlineSearcher
# DEFAULT_QUESTION = "모델 경량화 및 최적화와 관련하여 Netspresso bot에게 물어보세요.\n예를들어 \n\n- Why do I need to use Netspresso?\n- Summarize how to compress the model with netspresso.\n- Tell me what the pruning is.\n- What kinds of hardware can I use with this toolkit?\n- Can I use YOLOv8 with this tool? If so, tell me the examples."
DEFAULT_QUESTION = "Ask the Netspresso bot about model lightweighting and optimization.\nFor example \n\n- Why do I need to use Netspresso?\n- Summarize how to compress the model with netspresso.\n- Tell me what the pruning is.\n- What kinds of hardware can I use with this toolkit?\n- Can I use YOLOv8 with this tool? If so, tell me the examples."
TEMPERATURE = 0
# manual arguments (FIXME)
args = argparse.Namespace
args.index_type = "hybrid"
args.index = (
"/root/indexes/docs-netspresso-ai/sparse,/root/indexes/docs-netspresso-ai/dense"
)
if isinstance(
args.index, tuple
): # black extension automatically convert long str to tuple
assert len(args.index) == 1
args.index = args.index[0]
args.encoder = "castorini/mdpr-question-nq"
args.device = "cuda:0"
args.alpha = 0.5
args.normalization = True
args.lang_abbr = "en"
args.K = 10
# initialize qabot
print("initialize NP doc retrieval bot")
RETRIEVER = OnlineSearcher(args)
class LangChainCustomRetrieverWrapper(BaseRetriever):
def __init__(self, args):
super().__init__()
# self.retriever = RETRIEVER # TODO. should be initialize from args
# self.args = args
print("Initialize LangChainCustomRetrieverWrapper, TODO: fix minor bug")
def get_relevant_documents(self, query: str) -> List[Document]:
"""Get texts relevant for a query.
Args:
query: string to find relevant texts for
Returns:
List of relevant documents
"""
print(f"query = {query}")
# retrieve
# hits = self.retriever.search(query, self.args.K)
hits = RETRIEVER.search(
query, args.K
) # TODO: fix bug that BaseRetriever object cannot have extra field
# extract docs
results = [
{
"contents": json.loads(
# self.retriever.searcher.sparse_searcher.doc(hits[i].docid).raw() # TODO: fix bug that BaseRetriever object cannot have extra field
RETRIEVER.searcher.sparse_searcher.doc(hits[i].docid).raw()
)["contents"],
"docid": hits[i].docid,
}
for i in range(len(hits))
]
# make result list of Document object
return [
Document(
page_content=result["contents"], metadata={"source": result["docid"]}
)
for result in results
]
async def aget_relevant_documents(
self, query: str
) -> List[Document]: # abstractmethod
raise NotImplementedError
class RaLM:
def __init__(self, args):
self.args = args
self.initialize_ralm()
def initialize_ralm(self):
# initialize custom retriever
self.retriever = LangChainCustomRetrieverWrapper(self.args)
# prompt for RaLM
system_template = """Use the following pieces of context to answer the users question.
Take note of the sources and include them in the answer in the format: "SOURCES: source1 source2", use "SOURCES" in capital letters regardless of the number of sources.
Always try to generate answer from source.
----------------
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
llm = ChatOpenAI(model_name=self.args.model_name, temperature=TEMPERATURE)
self.chain = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=self.retriever,
return_source_documents=True,
reduce_k_below_max_tokens=True,
chain_type_kwargs=chain_type_kwargs,
)
def run_chain(self, question, force_korean=False):
if force_korean:
question = f"{question} 본문을 참고해서 한글로 대답해줘"
result = self.chain({"question": question})
# postprocess
result["answer"] = self.postprocess(result["answer"])
if isinstance(result["sources"], str):
result["sources"] = self.postprocess(result["sources"])
result["sources"] = result["sources"].split(", ")
result["sources"] = [src.strip() for src in result["sources"]]
# print result
self.print_result(result)
return result
def print_result(
self, result
): # print result of RetrievalQAWithSourcesChain of langchain
print(f"Answer: {result['answer']}")
print(f"Sources: ")
print(result["sources"])
assert isinstance(result["sources"], list)
nSource = len(result["sources"])
for i in range(nSource):
source_title = result["sources"][i]
print(f"{source_title}: ")
if "source_documents" in result:
for j in range(len(result["source_documents"])):
if result["source_documents"][j].metadata["source"] == source_title:
print(result["source_documents"][j].page_content)
break
def postprocess(self, text):
# remove final parenthesis (bug with unknown cause)
if (
text.endswith(")")
or text.endswith("(")
or text.endswith("[")
or text.endswith("]")
):
text = text[:-1]
return text.strip()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Ask a question to the netspresso docs."
)
# General
# parser.add_argument(
# "--question",
# type=str,
# default=None,
# required=True,
# help="The question to ask for database",
# )
parser.add_argument(
"--model_name",
type=str,
default="gpt-3.5-turbo-16k-0613",
help="model name for openai api",
)
# Retriever: fixed arg for now
"""
parser.add_argument(
"--query_encoder_name_or_dir",
type=str,
default="princeton-nlp/densephrases-multi-query-multi",
help="query encoder name registered in huggingface model hub OR custom query encoder checkpoint directory",
)
parser.add_argument(
"--index_name",
type=str,
default="1048576_flat_OPQ96",
help="index name appended to index directory prefix",
)
"""
args = parser.parse_args()
# to prevent collision with DensePhrase native argparser
sys.argv = [sys.argv[0]]
# initialize class
app = RaLM(args)
def question_answer(question):
result = app.run_chain(question=question, force_korean=False)
return result[
"answer"
], "\n######################################################\n\n".join(
[
f"Source {idx}\n{doc.page_content}"
for idx, doc in enumerate(result["source_documents"])
]
)
# launch gradio
gr.Interface(
fn=question_answer,
inputs=gr.inputs.Textbox(default=DEFAULT_QUESTION, label="Question"),
outputs=[
gr.inputs.Textbox(default="", label="Bot response"),
gr.inputs.Textbox(default="", label="Search result used by bot"),
],
title="Netspresso Q&A bot",
theme="dark-grass",
description="Ask the Netspresso bot about model lightweighting and optimization.", # simplified version, hide detail version
# description="모델 경량화 및 최적화와 관련하여 Netspresso bot에게 물어보세요.\n\n retriever: BM25&mdpr-question-nq, generator: gpt-3.5-turbo-16k-0613 (API)",
).launch(share=True)
|