|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.max_memory_allocated(device=device) |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
prompt = f"{prompt_part1} {color} colored {dress_type} with {design} design {prompt_part5}" |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
return image |
|
|
|
examples = [ |
|
"red, t-shirt, yellow stripes", |
|
"blue, hoodie, minimalist", |
|
"red, sweat shirt, geometric design", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
if torch.cuda.is_available(): |
|
power_device = "GPU" |
|
else: |
|
power_device = "CPU" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Text-to-Image Gradio Template |
|
Currently running on {power_device}. |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt_part1 = gr.Textbox( |
|
value="a single", |
|
label="Prompt Part 1", |
|
show_label=False, |
|
interactive=False, |
|
container=False, |
|
elem_id="prompt_part1", |
|
visible=False, |
|
) |
|
|
|
prompt_part2 = gr.Textbox( |
|
label="color", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="color (e.g., color category)", |
|
container=False, |
|
) |
|
|
|
prompt_part3 = gr.Textbox( |
|
label="dress_type", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)", |
|
container=False, |
|
) |
|
|
|
prompt_part4 = gr.Textbox( |
|
label="design", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="design", |
|
container=False, |
|
) |
|
|
|
prompt_part5 = gr.Textbox( |
|
value="hanging on the plain grey wall", |
|
label="Prompt Part 5", |
|
show_label=False, |
|
interactive=False, |
|
container=False, |
|
elem_id="prompt_part5", |
|
visible=False, |
|
) |
|
|
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=0.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=12, |
|
step=1, |
|
value=2, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[prompt_part2] |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result] |
|
) |
|
|
|
demo.queue().launch() |
|
|