File size: 5,152 Bytes
238cf85
 
 
afcd47e
 
238cf85
 
 
 
 
d488098
238cf85
 
 
d488098
238cf85
 
 
 
 
a187191
 
910a5d8
238cf85
 
d1dbfbe
238cf85
 
 
afcd47e
 
 
 
 
 
 
238cf85
 
 
 
a187191
 
 
 
 
 
afcd47e
238cf85
 
 
 
 
 
 
 
 
 
 
 
afcd47e
238cf85
 
afcd47e
238cf85
 
afcd47e
238cf85
afcd47e
a187191
 
 
 
 
910a5d8
 
a187191
910a5d8
 
 
a187191
 
910a5d8
 
a187191
910a5d8
 
 
a187191
 
afcd47e
 
a187191
238cf85
 
afcd47e
a187191
 
 
afcd47e
 
 
 
 
 
 
 
 
 
 
238cf85
afcd47e
 
 
 
 
 
 
238cf85
afcd47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a187191
afcd47e
 
 
 
 
a187191
afcd47e
a187191
afcd47e
a187191
 
 
 
 
238cf85
 
afcd47e
a187191
afcd47e
238cf85
 
910a5d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    prompt = f"{prompt_part1} {prompt_part2} {prompt_part3} {prompt_part4} {prompt_part5}"
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt_part1 = "a single"
            gr.Markdown(f"**Prompt Part 1:** {prompt_part1}")
            
            prompt_part2 = gr.Text(
                label="Prompt Part 2",
                show_label=False,
                max_lines=1,
                placeholder="Enter prompt part 2 (e.g., color category)",
                container=False,
            )
            
            prompt_part3 = gr.Text(
                label="Prompt Part 3",
                show_label=False,
                max_lines=1,
                placeholder="Enter prompt part 3 (e.g., t-shirt, sweatshirt, shirt, hoodie)",
                container=False,
            )
            
            prompt_part4 = gr.Text(
                label="Prompt Part 4",
                show_label=False,
                max_lines=1,
                placeholder="Enter design prompt",
                container=False,
            )
            
            prompt_part5 = "hanging on the plain grey wall"
            gr.Markdown(f"**Prompt Part 5:** {prompt_part5}")
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt_part2]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()