File size: 4,428 Bytes
238cf85 efb0114 238cf85 efb0114 348839f efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 efb0114 238cf85 348839f efb0114 238cf85 efb0114 238cf85 efb0114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_IMAGE_SIZE = 512
MAX_IMAGE_SIZE = 1024
# Define the default parts of the prompt
DEFAULT_PREFIX = "a single"
DEFAULT_SUFFIX = "hanging on the grey wall"
CATEGORIES = ["T-shirt", "Sweatshirt", "Shirt", "Hoodie"]
EXAMPLES = [
["T-shirt", "floral pattern"],
["Sweatshirt", "abstract design"],
["Shirt", "geometric shapes"],
["Hoodie", "urban graffiti"],
]
def infer(category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = f"{DEFAULT_PREFIX} {category} with {design} {DEFAULT_SUFFIX}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
category = gr.Dropdown(label="Category", choices=CATEGORIES, value=CATEGORIES[0])
design = gr.Text(
label="Design/Graphic",
show_label=True,
max_lines=1,
placeholder="Enter design or graphic",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_IMAGE_SIZE,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_IMAGE_SIZE,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=50,
)
gr.Examples(
examples=EXAMPLES,
inputs=[category, design]
)
run_button.click(
fn=infer,
inputs=[category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|