File size: 4,428 Bytes
238cf85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb0114
238cf85
 
efb0114
 
 
 
 
348839f
 
 
 
efb0114
238cf85
efb0114
 
 
238cf85
 
 
 
 
efb0114
 
 
 
 
 
 
238cf85
 
 
 
efb0114
238cf85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb0114
 
 
 
238cf85
efb0114
238cf85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb0114
238cf85
 
 
 
 
 
 
efb0114
238cf85
 
 
 
 
 
 
 
efb0114
238cf85
 
 
 
 
 
 
efb0114
238cf85
 
 
348839f
efb0114
238cf85
 
 
efb0114
 
 
238cf85
 
efb0114
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
DEFAULT_IMAGE_SIZE = 512
MAX_IMAGE_SIZE = 1024

# Define the default parts of the prompt
DEFAULT_PREFIX = "a single"
DEFAULT_SUFFIX = "hanging on the grey wall"
CATEGORIES = ["T-shirt", "Sweatshirt", "Shirt", "Hoodie"]
EXAMPLES = [
    ["T-shirt", "floral pattern"],
    ["Sweatshirt", "abstract design"],
    ["Shirt", "geometric shapes"],
    ["Hoodie", "urban graffiti"],
]

def infer(category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    prompt = f"{DEFAULT_PREFIX} {category} with {design} {DEFAULT_SUFFIX}"
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            category = gr.Dropdown(label="Category", choices=CATEGORIES, value=CATEGORIES[0])
            design = gr.Text(
                label="Design/Graphic",
                show_label=True,
                max_lines=1,
                placeholder="Enter design or graphic",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=DEFAULT_IMAGE_SIZE,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=DEFAULT_IMAGE_SIZE,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=50,
                )
        
        gr.Examples(
            examples=EXAMPLES,
            inputs=[category, design]
        )

    run_button.click(
        fn=infer,
        inputs=[category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()