Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from diffusers import StableDiffusionPipeline | |
# Setup the model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id = "stabilityai/sdxl-turbo" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32) | |
pipe = pipe.to(device) | |
# Generate T-shirt design function | |
def generate_tshirt_design(style, color, graphics, text=None): | |
prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}" | |
if text: | |
prompt += f", text: {text}" | |
image = pipe(prompt).images[0] | |
return image | |
# T-shirt mockup generator with Gradio interface | |
examples = [ | |
["Casual", "White", "Logo: MyBrand", None], | |
["Formal", "Black", "Text: Hello World", "Custom text"], | |
["Sports", "Red", "Graphic: Team logo", None], | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# T-shirt Mockup Generator with Rookus AI | |
""") | |
with gr.Row(): | |
style = gr.Dropdown( | |
label="T-shirt Style", | |
choices=["Casual", "Formal", "Sports"], | |
value="Casual", | |
container=False, | |
) | |
run_button = gr.Button("Generate Mockup", scale=0) | |
result = gr.Image(label="Mockup", show_label=False) | |
with gr.Accordion("Design Options", open=False): | |
color = gr.Radio( | |
label="T-shirt Color", | |
choices=["White", "Black", "Blue", "Red", "Green"], | |
value="White", | |
) | |
graphics = gr.Textbox( | |
label="Graphics/Logo", | |
placeholder="Enter graphics or logo details", | |
visible=True, | |
) | |
text = gr.Textbox( | |
label="Text (optional)", | |
placeholder="Enter optional text", | |
visible=True, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[style, color, graphics, text] | |
) | |
def generate_tshirt_mockup(style, color, graphics, text=None): | |
# Generate T-shirt design | |
design_image = generate_tshirt_design(style, color, graphics, text) | |
# Load blank T-shirt mockup template image | |
mockup_template = Image.open("/content/drive/MyDrive/unnamed.jpg") | |
# Convert design image and mockup template to numpy arrays | |
design_np = np.array(design_image) | |
mockup_np = np.array(mockup_template) | |
# Resize design image to fit mockup (example resizing) | |
design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2)) | |
# Example: Overlay design onto mockup using OpenCV | |
y_offset = mockup_np.shape[0] // 4 | |
x_offset = mockup_np.shape[1] // 4 | |
y1, y2 = y_offset, y_offset + design_resized.shape[0] | |
x1, x2 = x_offset, x_offset + design_resized.shape[1] | |
alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2]) | |
alpha_l = 1.0 - alpha_s | |
for c in range(0, 3): | |
mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] + | |
alpha_l * mockup_np[y1:y2, x1:x2, c]) | |
# Convert back to PIL image for Gradio output | |
result_image = Image.fromarray(mockup_np) | |
return result_image | |
run_button.click( | |
fn=generate_tshirt_mockup, | |
inputs=[style, color, graphics, text], | |
outputs=[result] | |
) | |
demo.queue().launch() | |