Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,11 @@ import numpy as np
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
-
from torch.fft import fftn, ifftn # For Fourier transforms
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
-
# Load the model
|
11 |
if torch.cuda.is_available():
|
|
|
12 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
13 |
pipe.enable_xformers_memory_efficient_attention()
|
14 |
pipe = pipe.to(device)
|
@@ -19,42 +18,14 @@ else:
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
# Group-theory-based seed reduction (example: cyclic group on mod N)
|
23 |
-
def reduce_seeds(seed):
|
24 |
-
group_size = 100 # Cyclic group of size 100
|
25 |
-
return seed % group_size
|
26 |
-
|
27 |
-
# Fourier-based optimization with proper tensor conversion
|
28 |
-
def fft_convolution(image):
|
29 |
-
# Convert the image to a PyTorch tensor
|
30 |
-
tensor_image = torch.tensor(image).permute(2, 0, 1).float() # Convert to tensor and adjust channels
|
31 |
-
|
32 |
-
# Convert to frequency domain using FFT
|
33 |
-
freq_image = fftn(tensor_image)
|
34 |
-
|
35 |
-
# Apply some transformation in the frequency domain (example: filtering, smoothing)
|
36 |
-
# This is a placeholder; implement any frequency domain operation here
|
37 |
-
transformed_freq_image = freq_image * torch.exp(-torch.abs(freq_image)) # Example operation
|
38 |
-
|
39 |
-
# Convert back to spatial domain using inverse FFT
|
40 |
-
transformed_image = ifftn(transformed_freq_image).real
|
41 |
-
|
42 |
-
# Convert back to NumPy array and adjust channels back to original shape
|
43 |
-
result_image = transformed_image.permute(1, 2, 0).numpy()
|
44 |
-
|
45 |
-
return result_image
|
46 |
-
|
47 |
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
48 |
prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}"
|
49 |
|
50 |
if randomize_seed:
|
51 |
seed = random.randint(0, MAX_SEED)
|
52 |
-
else:
|
53 |
-
seed = reduce_seeds(seed) # Apply symmetry-based seed reduction
|
54 |
|
55 |
generator = torch.Generator().manual_seed(seed)
|
56 |
|
57 |
-
# Run the diffusion model
|
58 |
image = pipe(
|
59 |
prompt=prompt,
|
60 |
negative_prompt=negative_prompt,
|
@@ -63,13 +34,9 @@ def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt
|
|
63 |
width=width,
|
64 |
height=height,
|
65 |
generator=generator
|
66 |
-
).images[0]
|
67 |
-
|
68 |
-
|
69 |
-
image = np.array(image) # Convert to numpy array
|
70 |
-
optimized_image = fft_convolution(image) # Apply Fourier convolution
|
71 |
-
|
72 |
-
return optimized_image
|
73 |
|
74 |
examples = [
|
75 |
"red, t-shirt, yellow stripes",
|
@@ -143,6 +110,7 @@ with gr.Blocks(css=css) as demo:
|
|
143 |
visible=False,
|
144 |
)
|
145 |
|
|
|
146 |
run_button = gr.Button("Run", scale=0)
|
147 |
|
148 |
result = gr.Image(label="Result", show_label=False)
|
@@ -213,4 +181,4 @@ with gr.Blocks(css=css) as demo:
|
|
213 |
outputs=[result]
|
214 |
)
|
215 |
|
216 |
-
demo.queue().launch()
|
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
|
|
9 |
if torch.cuda.is_available():
|
10 |
+
torch.cuda.max_memory_allocated(device=device)
|
11 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
pipe.enable_xformers_memory_efficient_attention()
|
13 |
pipe = pipe.to(device)
|
|
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}"
|
23 |
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
26 |
|
27 |
generator = torch.Generator().manual_seed(seed)
|
28 |
|
|
|
29 |
image = pipe(
|
30 |
prompt=prompt,
|
31 |
negative_prompt=negative_prompt,
|
|
|
34 |
width=width,
|
35 |
height=height,
|
36 |
generator=generator
|
37 |
+
).images[0]
|
38 |
+
|
39 |
+
return image
|
|
|
|
|
|
|
|
|
40 |
|
41 |
examples = [
|
42 |
"red, t-shirt, yellow stripes",
|
|
|
110 |
visible=False,
|
111 |
)
|
112 |
|
113 |
+
|
114 |
run_button = gr.Button("Run", scale=0)
|
115 |
|
116 |
result = gr.Image(label="Result", show_label=False)
|
|
|
181 |
outputs=[result]
|
182 |
)
|
183 |
|
184 |
+
demo.queue().launch()
|