Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Function to apply FFT and return an image | |
def apply_fft(image: Image.Image): | |
# Convert the image to grayscale for FFT (can be extended for color images too) | |
image_gray = image.convert("L") | |
# Convert the image to numpy array | |
image_array = np.array(image_gray) | |
# Apply 2D FFT | |
fft_image = np.fft.fft2(image_array) | |
fft_shifted = np.fft.fftshift(fft_image) # Shift the zero frequency to the center | |
# Magnitude spectrum for visualization | |
magnitude_spectrum = 20 * np.log(np.abs(fft_shifted)) | |
# Normalize magnitude spectrum to 0-255 for visualization | |
magnitude_spectrum = np.interp(magnitude_spectrum, (magnitude_spectrum.min(), magnitude_spectrum.max()), (0, 255)) | |
# Convert back to image | |
fft_image_pil = Image.fromarray(magnitude_spectrum.astype(np.uint8)) | |
return fft_image_pil | |
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Generate the image using the diffusion pipeline | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Apply FFT post-processing to the generated image | |
fft_image = apply_fft(image) | |
return fft_image | |
examples = [ | |
"red, t-shirt, yellow stripes", | |
"blue, hoodie, minimalist", | |
"red, sweat shirt, geometric design", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image Gradio Template with FFT Post-Processing | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt_part1 = gr.Textbox( | |
value="a single", | |
label="Prompt Part 1", | |
show_label=False, | |
interactive=False, | |
container=False, | |
elem_id="prompt_part1", | |
visible=False, | |
) | |
prompt_part2 = gr.Textbox( | |
label="color", | |
show_label=False, | |
max_lines=1, | |
placeholder="color (e.g., color category)", | |
container=False, | |
) | |
prompt_part3 = gr.Textbox( | |
label="dress_type", | |
show_label=False, | |
max_lines=1, | |
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)", | |
container=False, | |
) | |
prompt_part4 = gr.Textbox( | |
label="design", | |
show_label=False, | |
max_lines=1, | |
placeholder="design", | |
container=False, | |
) | |
prompt_part5 = gr.Textbox( | |
value="hanging on the plain wall", | |
label="Prompt Part 5", | |
show_label=False, | |
interactive=False, | |
container=False, | |
elem_id="prompt_part5", | |
visible=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt_part2] | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
demo.queue().launch() | |