Spaces:
Running
Running
File size: 7,978 Bytes
a49e567 ffb89fc e19b69e ffb89fc a49e567 ad7af6e e19b69e a49e567 ad7af6e a49e567 ad7af6e a49e567 ad7af6e a49e567 ad7af6e a49e567 e19b69e a49e567 ad7af6e e19b69e a49e567 e19b69e a49e567 e19b69e 771025f eb4c6de e19b69e a49e567 e19b69e ffb89fc a49e567 e19b69e a49e567 bc305d6 e19b69e a49e567 e19b69e ad7af6e e19b69e a49e567 e19b69e a49e567 e19b69e a49e567 e19b69e a49e567 771025f a49e567 e19b69e a49e567 ad7af6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import paperqa
import pickle
from pathlib import Path
import requests
import zipfile
import io
import tempfile
import os
docs = None
def request_pathname(files):
if files is None:
return [[]]
return [[file.name, file.name.split('/')[-1], None] for file in files], [[len(files), 0]]
def validate_dataset(dataset, openapi):
global docs
docs = None # clear it out if dataset is modified
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready and type(openapi) is str and len(openapi) > 0:
return "✨Ready✨"
elif docs_ready:
return "⚠️Waiting for key..."
elif type(openapi) is str and len(openapi) > 0:
return "⚠️Waiting for documents..."
else:
return "⚠️Waiting for documents and key..."
def make_stats(docs):
return [[len(docs.doc_previews), sum([x[0] for x in docs.doc_previews])]]
# , progress=gr.Progress()):
def do_ask(question, button, openapi, dataset, length, do_marg, k, max_sources, docs):
passages = ""
docs_ready = dataset.iloc[-1, 0] != ""
if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:
if docs is None: # don't want to rebuild index if it's already built
import os
os.environ['OPENAI_API_KEY'] = openapi.strip()
docs = paperqa.Docs()
# dataset is pandas dataframe
for _, row in dataset.iterrows():
try:
docs.add(row['filepath'], row['citation string'],
key=row['key'], disable_check=True)
yield "", "", "", docs, make_stats(docs)
except Exception as e:
pass
else:
yield "", "", "", docs, [[0, 0]]
#progress(0, "Building Index...")
docs._build_faiss_index()
#progress(0.25, "Querying...")
for i, result in enumerate(docs.query_gen(question,
length_prompt=f'use {length:d} words',
marginal_relevance=do_marg,
k=k, max_sources=max_sources)):
#progress(0.25 + 0.1 * i, "Generating Context" + str(i))
yield result.formatted_answer, result.context, passages, docs, make_stats(docs)
#progress(1.0, "Done!")
# format the passages
for i, (key, passage) in enumerate(result.passages.items()):
passages += f'{i+1}. {key}\n\n >{passage} \n\n'
yield result.formatted_answer, result.context, passages, docs, make_stats(docs)
def download_repo(gh_repo, pbar=gr.Progress()):
# download zipped version of repo
r = requests.get(f'https://api.github.com/repos/{gh_repo}/zipball')
files = []
if r.status_code == 200:
pbar(1, 'Downloaded')
# iterate through files in zip
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
for i, f in enumerate(z.namelist()):
# skip directories
if f.endswith('/'):
continue
# try to read as plaintext (skip binary files)
try:
text = z.read(f).decode('utf-8')
except UnicodeDecodeError:
continue
# check if it's bigger than 1MB or smaller than 10 bytes
if len(text) > 1e6 or len(text) < 10:
continue
# have to save to temporary file so we have a path
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(text.encode('utf-8'))
tmp.flush()
path = tmp.name
# strip off the first directory of f
rel_path = '/'.join(f.split('/')[1:])
key = os.path.basename(f)
citation = f'[{rel_path}](https://github.com/{gh_repo}/tree/main/{rel_path})'
files.append([path, citation, key])
yield files, [[len(files), 0]]
pbar(int((i+1)/len(z.namelist()) * 99),
f'Added {f}')
pbar(100, 'Done')
else:
raise ValueError('Unknown Github Repo')
with gr.Blocks() as demo:
docs = gr.State(None)
openai_api_key = gr.State('')
gr.Markdown(f"""
# Document Question and Answer (v{paperqa.__version__})
*By Andrew White ([@andrewwhite01](https://twitter.com/andrewwhite01))*
This tool will enable asking questions of your uploaded text, PDF documents,
or scrape github repos.
It uses OpenAI's GPT models and thus you must enter your API key below. This
tool is under active development and currently uses many tokens - up to 10,000
for a single query. That is $0.10-0.20 per query, so please be careful!
* [PaperQA](https://github.com/whitead/paper-qa) is the code used to build this tool.
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
2. Upload your documents and modify citation strings if you want (to look prettier in answer)
""")
openai_api_key = gr.Textbox(
label="OpenAI API Key", placeholder="sk-...", type="password")
with gr.Tab('File Upload'):
uploaded_files = gr.File(
label="Your Documents Upload (PDF or txt)", file_count="multiple", )
with gr.Tab('Github Repo'):
gh_repo = gr.Textbox(
label="Github Repo", placeholder="whitead/paper-qa")
download = gr.Button("Download Repo")
with gr.Accordion("See Docs:", open=False):
dataset = gr.Dataframe(
headers=["filepath", "citation string", "key"],
datatype=["str", "str", "str"],
col_count=(3, "fixed"),
interactive=True,
label="Documents and Citations",
overflow_row_behaviour='paginate',
max_rows=5
)
buildb = gr.Textbox("⚠️Waiting for documents and key...",
label="Status", interactive=False, show_label=True,
max_lines=1)
stats = gr.Dataframe(headers=['Docs', 'Chunks'],
datatype=['number', 'number'],
col_count=(2, "fixed"),
interactive=False,
label="Doc Stats")
openai_api_key.change(validate_dataset, inputs=[
dataset, openai_api_key], outputs=[buildb])
dataset.change(validate_dataset, inputs=[
dataset, openai_api_key], outputs=[buildb])
uploaded_files.change(request_pathname, inputs=[
uploaded_files], outputs=[dataset, stats])
download.click(fn=download_repo, inputs=[
gh_repo], outputs=[dataset, stats])
query = gr.Textbox(
placeholder="Enter your question here...", label="Question")
with gr.Row():
length = gr.Slider(25, 200, value=100, step=5,
label='Words in answer')
marg = gr.Checkbox(True, label='Max marginal relevance')
k = gr.Slider(1, 20, value=10, step=1,
label='Chunks to examine')
sources = gr.Slider(1, 10, value=5, step=1,
label='Contexts to include')
ask = gr.Button("Ask Question")
answer = gr.Markdown(label="Answer")
with gr.Accordion("Context", open=True):
context = gr.Markdown(label="Context")
with gr.Accordion("Raw Text", open=False):
passages = gr.Markdown(label="Passages")
ask.click(fn=do_ask, inputs=[query, buildb,
openai_api_key, dataset,
length, marg, k, sources,
docs], outputs=[answer, context, passages, docs, stats])
demo.queue(concurrency_count=20)
demo.launch(show_error=True)
|