import gradio as gr from transformers import pipeline import cv2 from PIL import Image import io import scipy import torch import time import numpy as np def detect_scene_changes(video_path, threshold): """ Détecte les changements de plan dans une vidéo. Parameters: - video_path: chemin vers le fichier vidéo - threshold: seuil de différence pour détecter un changement de plan Returns: Une liste des numéros d'images où un changement de plan est détecté. """ cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("Erreur lors de l'ouverture de la vidéo.") return [] ret, prev_frame = cap.read() if not ret: print("Erreur lors de la lecture de la vidéo.") return [] prev_frame_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY) scene_changes = [] frame_number = 0 while True: ret, current_frame = cap.read() if not ret: break current_frame_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY) # Calculer la différence absolue entre les deux images diff = cv2.absdiff(prev_frame_gray, current_frame_gray) mean_diff = np.mean(diff) if mean_diff > threshold: scene_changes.append(frame_number) prev_frame_gray = current_frame_gray frame_number += 1 cap.release() return scene_changes def video_to_descriptions(video, target_language="en"): threshold =25.0 scene_changes = detect_scene_changes(video, threshold) start_time = time.time() print("START TIME = ", start_time) ImgToText = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") Summarize = pipeline("summarization", model="tuner007/pegasus_summarizer") translator = pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{target_language}") audio = pipeline("text-to-speech", model="suno/bark-small") voice_preset = f"v2/{target_language}_speaker_1" cap = cv2.VideoCapture(video) fps = int(cap.get(cv2.CAP_PROP_FPS)) descriptions = [] frame_count = 0 while True: ret, frame = cap.read() if not ret: break if (frame_count % (fps * 3) == 0) or (frame_count in scene_changes) : frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_img = Image.fromarray(frame_rgb) outputs = ImgToText(pil_img) description = outputs[0]['generated_text'] if (frame_count in scene_changes): descriptions.append(" There has been a scene change, now we can observe " + description) print(str(frame_count) + " | CHANGEMENT DE PLAN | " + outputs[0]['generated_text']) else: descriptions.append(" we can see that " + description) print(str(frame_count) + " | " + outputs[0]['generated_text']) frame_count += 1 cap.release() concatenated_description = " ".join(descriptions).split(" There has been a scene change, now we can observe") plan_number = 1 summarized_description = f"We can see the Scene number {plan_number}, where " for plan in concatenated_description: if not (summarized_description == "We can see the Scene number 1, where "): summarized_description += f"There has been a scene change, now we can observe the Scene number {plan_number}, where " summarized_description += Summarize(plan, max_length=20)[0]["summary_text"] plan_number += 1 else: summarized_description += Summarize(plan, max_length=20)[0]["summary_text"] plan_number += 1 print("SUMMARIZATION : " + summarized_description) translated_text = translator(summarized_description, max_length=2560)[0]["translation_text"] print("TRANSLATION : " + translated_text) audio_file = audio(translated_text) output_path = "./bark_out.wav" scipy.io.wavfile.write(output_path, data=audio_file["audio"][0], rate=audio_file["sampling_rate"]) stop_time = time.time() print("EXECUTION TIME = ", stop_time - start_time) return output_path language_dropdown = gr.Dropdown( ["en", "fr", "de", "es"], label="[MANDATORY] Language", info="The Voice's Language" ) iface = gr.Interface( fn=video_to_descriptions, inputs=[gr.Video(label="Video to Upload", info="The Video"), language_dropdown], outputs="audio", live=False ) if __name__ == "__main__": iface.launch()