Spaces:
Running
Running
Upload 35 files
Browse files- ONNXVITS_infer.py +93 -0
- ONNXVITS_inference.py +36 -0
- ONNXVITS_models.py +509 -0
- ONNXVITS_modules.py +390 -0
- ONNXVITS_to_onnx.py +31 -0
- ONNXVITS_transforms.py +196 -0
- ONNXVITS_utils.py +19 -0
- ONNX_net/dec.onnx +3 -0
- ONNX_net/dp.onnx +3 -0
- ONNX_net/enc_p.onnx +3 -0
- ONNX_net/flow.onnx +3 -0
- attentions.py +0 -3
- commons.py +13 -77
- hubert_model.py +221 -0
- jieba/dict.txt +0 -0
- mel_processing.py +1 -12
- models.py +21 -12
- modules.py +1 -4
- text/__init__.py +3 -27
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/cleaners.cpython-37.pyc +0 -0
- text/__pycache__/japanese.cpython-37.pyc +0 -0
- text/cleaners.py +128 -25
- text/mandarin.py +4 -0
- text/thai.py +44 -0
- utils.py +43 -226
ONNXVITS_infer.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import commons
|
3 |
+
import models
|
4 |
+
class SynthesizerTrn(models.SynthesizerTrn):
|
5 |
+
"""
|
6 |
+
Synthesizer for Training
|
7 |
+
"""
|
8 |
+
|
9 |
+
def __init__(self,
|
10 |
+
n_vocab,
|
11 |
+
spec_channels,
|
12 |
+
segment_size,
|
13 |
+
inter_channels,
|
14 |
+
hidden_channels,
|
15 |
+
filter_channels,
|
16 |
+
n_heads,
|
17 |
+
n_layers,
|
18 |
+
kernel_size,
|
19 |
+
p_dropout,
|
20 |
+
resblock,
|
21 |
+
resblock_kernel_sizes,
|
22 |
+
resblock_dilation_sizes,
|
23 |
+
upsample_rates,
|
24 |
+
upsample_initial_channel,
|
25 |
+
upsample_kernel_sizes,
|
26 |
+
n_speakers=0,
|
27 |
+
gin_channels=0,
|
28 |
+
use_sdp=True,
|
29 |
+
**kwargs):
|
30 |
+
|
31 |
+
super().__init__(
|
32 |
+
n_vocab,
|
33 |
+
spec_channels,
|
34 |
+
segment_size,
|
35 |
+
inter_channels,
|
36 |
+
hidden_channels,
|
37 |
+
filter_channels,
|
38 |
+
n_heads,
|
39 |
+
n_layers,
|
40 |
+
kernel_size,
|
41 |
+
p_dropout,
|
42 |
+
resblock,
|
43 |
+
resblock_kernel_sizes,
|
44 |
+
resblock_dilation_sizes,
|
45 |
+
upsample_rates,
|
46 |
+
upsample_initial_channel,
|
47 |
+
upsample_kernel_sizes,
|
48 |
+
n_speakers=n_speakers,
|
49 |
+
gin_channels=gin_channels,
|
50 |
+
use_sdp=use_sdp,
|
51 |
+
**kwargs
|
52 |
+
)
|
53 |
+
|
54 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
55 |
+
from ONNXVITS_utils import runonnx
|
56 |
+
|
57 |
+
#x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
58 |
+
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
|
59 |
+
x = torch.from_numpy(x)
|
60 |
+
m_p = torch.from_numpy(m_p)
|
61 |
+
logs_p = torch.from_numpy(logs_p)
|
62 |
+
x_mask = torch.from_numpy(x_mask)
|
63 |
+
|
64 |
+
if self.n_speakers > 0:
|
65 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
66 |
+
else:
|
67 |
+
g = None
|
68 |
+
|
69 |
+
#logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
70 |
+
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
|
71 |
+
logw = torch.from_numpy(logw[0])
|
72 |
+
|
73 |
+
w = torch.exp(logw) * x_mask * length_scale
|
74 |
+
w_ceil = torch.ceil(w)
|
75 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
76 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
77 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
78 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
79 |
+
|
80 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
81 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
82 |
+
|
83 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
84 |
+
|
85 |
+
#z = self.flow(z_p, y_mask, g=g, reverse=True)
|
86 |
+
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
|
87 |
+
z = torch.from_numpy(z[0])
|
88 |
+
|
89 |
+
#o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
90 |
+
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
|
91 |
+
o = torch.from_numpy(o[0])
|
92 |
+
|
93 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
ONNXVITS_inference.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
import IPython.display as ipd
|
4 |
+
import torch
|
5 |
+
import commons
|
6 |
+
import utils
|
7 |
+
import ONNXVITS_infer
|
8 |
+
from text import text_to_sequence
|
9 |
+
|
10 |
+
def get_text(text, hps):
|
11 |
+
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
12 |
+
if hps.data.add_blank:
|
13 |
+
text_norm = commons.intersperse(text_norm, 0)
|
14 |
+
text_norm = torch.LongTensor(text_norm)
|
15 |
+
return text_norm
|
16 |
+
|
17 |
+
hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json")
|
18 |
+
|
19 |
+
net_g = ONNXVITS_infer.SynthesizerTrn(
|
20 |
+
len(hps.symbols),
|
21 |
+
hps.data.filter_length // 2 + 1,
|
22 |
+
hps.train.segment_size // hps.data.hop_length,
|
23 |
+
n_speakers=hps.data.n_speakers,
|
24 |
+
**hps.model)
|
25 |
+
_ = net_g.eval()
|
26 |
+
|
27 |
+
_ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g)
|
28 |
+
|
29 |
+
text1 = get_text("おはようございます。", hps)
|
30 |
+
stn_tst = text1
|
31 |
+
with torch.no_grad():
|
32 |
+
x_tst = stn_tst.unsqueeze(0)
|
33 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
34 |
+
sid = torch.LongTensor([0])
|
35 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
|
36 |
+
print(audio)
|
ONNXVITS_models.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import ONNXVITS_modules as modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
self.w = None
|
51 |
+
self.reverse = None
|
52 |
+
self.noise_scale = None
|
53 |
+
def forward(self, x, x_mask, g=None):
|
54 |
+
w = self.w
|
55 |
+
reverse = self.reverse
|
56 |
+
noise_scale = self.noise_scale
|
57 |
+
|
58 |
+
x = torch.detach(x)
|
59 |
+
x = self.pre(x)
|
60 |
+
if g is not None:
|
61 |
+
g = torch.detach(g)
|
62 |
+
x = x + self.cond(g)
|
63 |
+
x = self.convs(x, x_mask)
|
64 |
+
x = self.proj(x) * x_mask
|
65 |
+
|
66 |
+
if not reverse:
|
67 |
+
flows = self.flows
|
68 |
+
assert w is not None
|
69 |
+
|
70 |
+
logdet_tot_q = 0
|
71 |
+
h_w = self.post_pre(w)
|
72 |
+
h_w = self.post_convs(h_w, x_mask)
|
73 |
+
h_w = self.post_proj(h_w) * x_mask
|
74 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
75 |
+
z_q = e_q
|
76 |
+
for flow in self.post_flows:
|
77 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
78 |
+
logdet_tot_q += logdet_q
|
79 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
80 |
+
u = torch.sigmoid(z_u) * x_mask
|
81 |
+
z0 = (w - u) * x_mask
|
82 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
83 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
84 |
+
|
85 |
+
logdet_tot = 0
|
86 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
87 |
+
logdet_tot += logdet
|
88 |
+
z = torch.cat([z0, z1], 1)
|
89 |
+
for flow in flows:
|
90 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
+
logdet_tot = logdet_tot + logdet
|
92 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
93 |
+
return nll + logq # [b]
|
94 |
+
else:
|
95 |
+
flows = list(reversed(self.flows))
|
96 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
97 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
98 |
+
for flow in flows:
|
99 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
100 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
101 |
+
logw = z0
|
102 |
+
return logw
|
103 |
+
|
104 |
+
|
105 |
+
class TextEncoder(nn.Module):
|
106 |
+
def __init__(self,
|
107 |
+
n_vocab,
|
108 |
+
out_channels,
|
109 |
+
hidden_channels,
|
110 |
+
filter_channels,
|
111 |
+
n_heads,
|
112 |
+
n_layers,
|
113 |
+
kernel_size,
|
114 |
+
p_dropout):
|
115 |
+
super().__init__()
|
116 |
+
self.n_vocab = n_vocab
|
117 |
+
self.out_channels = out_channels
|
118 |
+
self.hidden_channels = hidden_channels
|
119 |
+
self.filter_channels = filter_channels
|
120 |
+
self.n_heads = n_heads
|
121 |
+
self.n_layers = n_layers
|
122 |
+
self.kernel_size = kernel_size
|
123 |
+
self.p_dropout = p_dropout
|
124 |
+
|
125 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
126 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
127 |
+
|
128 |
+
self.encoder = attentions.Encoder(
|
129 |
+
hidden_channels,
|
130 |
+
filter_channels,
|
131 |
+
n_heads,
|
132 |
+
n_layers,
|
133 |
+
kernel_size,
|
134 |
+
p_dropout)
|
135 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
136 |
+
|
137 |
+
def forward(self, x, x_lengths):
|
138 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
139 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
140 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
141 |
+
|
142 |
+
x = self.encoder(x * x_mask, x_mask)
|
143 |
+
stats = self.proj(x) * x_mask
|
144 |
+
|
145 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
146 |
+
return x, m, logs, x_mask
|
147 |
+
|
148 |
+
|
149 |
+
class ResidualCouplingBlock(nn.Module):
|
150 |
+
def __init__(self,
|
151 |
+
channels,
|
152 |
+
hidden_channels,
|
153 |
+
kernel_size,
|
154 |
+
dilation_rate,
|
155 |
+
n_layers,
|
156 |
+
n_flows=4,
|
157 |
+
gin_channels=0):
|
158 |
+
super().__init__()
|
159 |
+
self.channels = channels
|
160 |
+
self.hidden_channels = hidden_channels
|
161 |
+
self.kernel_size = kernel_size
|
162 |
+
self.dilation_rate = dilation_rate
|
163 |
+
self.n_layers = n_layers
|
164 |
+
self.n_flows = n_flows
|
165 |
+
self.gin_channels = gin_channels
|
166 |
+
|
167 |
+
self.flows = nn.ModuleList()
|
168 |
+
for i in range(n_flows):
|
169 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
170 |
+
self.flows.append(modules.Flip())
|
171 |
+
|
172 |
+
self.reverse = None
|
173 |
+
def forward(self, x, x_mask, g=None):
|
174 |
+
reverse = self.reverse
|
175 |
+
if not reverse:
|
176 |
+
for flow in self.flows:
|
177 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
178 |
+
else:
|
179 |
+
for flow in reversed(self.flows):
|
180 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class PosteriorEncoder(nn.Module):
|
185 |
+
def __init__(self,
|
186 |
+
in_channels,
|
187 |
+
out_channels,
|
188 |
+
hidden_channels,
|
189 |
+
kernel_size,
|
190 |
+
dilation_rate,
|
191 |
+
n_layers,
|
192 |
+
gin_channels=0):
|
193 |
+
super().__init__()
|
194 |
+
self.in_channels = in_channels
|
195 |
+
self.out_channels = out_channels
|
196 |
+
self.hidden_channels = hidden_channels
|
197 |
+
self.kernel_size = kernel_size
|
198 |
+
self.dilation_rate = dilation_rate
|
199 |
+
self.n_layers = n_layers
|
200 |
+
self.gin_channels = gin_channels
|
201 |
+
|
202 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
203 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
204 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
205 |
+
|
206 |
+
def forward(self, x, x_lengths, g=None):
|
207 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
208 |
+
x = self.pre(x) * x_mask # x_in : [b, c, t] -> [b, h, t]
|
209 |
+
x = self.enc(x, x_mask, g=g) # x_in : [b, h, t], g : [b, h, 1], x = x_in + g
|
210 |
+
stats = self.proj(x) * x_mask
|
211 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
212 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
213 |
+
return z, m, logs, x_mask # z, m, logs : [b, h, t]
|
214 |
+
|
215 |
+
|
216 |
+
class Generator(torch.nn.Module):
|
217 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
218 |
+
super(Generator, self).__init__()
|
219 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
220 |
+
self.num_upsamples = len(upsample_rates)
|
221 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
222 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
223 |
+
|
224 |
+
self.ups = nn.ModuleList()
|
225 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
226 |
+
self.ups.append(weight_norm(
|
227 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
228 |
+
k, u, padding=(k-u)//2)))
|
229 |
+
|
230 |
+
self.resblocks = nn.ModuleList()
|
231 |
+
for i in range(len(self.ups)):
|
232 |
+
ch = upsample_initial_channel//(2**(i+1))
|
233 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
234 |
+
self.resblocks.append(resblock(ch, k, d))
|
235 |
+
|
236 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
237 |
+
self.ups.apply(init_weights)
|
238 |
+
|
239 |
+
if gin_channels != 0:
|
240 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
241 |
+
|
242 |
+
def forward(self, x, g=None):
|
243 |
+
x = self.conv_pre(x)
|
244 |
+
if g is not None:
|
245 |
+
x = x + self.cond(g)
|
246 |
+
|
247 |
+
for i in range(self.num_upsamples):
|
248 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
249 |
+
x = self.ups[i](x)
|
250 |
+
xs = None
|
251 |
+
for j in range(self.num_kernels):
|
252 |
+
if xs is None:
|
253 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
254 |
+
else:
|
255 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
256 |
+
x = xs / self.num_kernels
|
257 |
+
x = F.leaky_relu(x)
|
258 |
+
x = self.conv_post(x)
|
259 |
+
x = torch.tanh(x)
|
260 |
+
|
261 |
+
return x
|
262 |
+
|
263 |
+
def remove_weight_norm(self):
|
264 |
+
print('Removing weight norm...')
|
265 |
+
for l in self.ups:
|
266 |
+
remove_weight_norm(l)
|
267 |
+
for l in self.resblocks:
|
268 |
+
l.remove_weight_norm()
|
269 |
+
|
270 |
+
|
271 |
+
class DiscriminatorP(torch.nn.Module):
|
272 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
273 |
+
super(DiscriminatorP, self).__init__()
|
274 |
+
self.period = period
|
275 |
+
self.use_spectral_norm = use_spectral_norm
|
276 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
277 |
+
self.convs = nn.ModuleList([
|
278 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
279 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
280 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
281 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
282 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
283 |
+
])
|
284 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
fmap = []
|
288 |
+
|
289 |
+
# 1d to 2d
|
290 |
+
b, c, t = x.shape
|
291 |
+
if t % self.period != 0: # pad first
|
292 |
+
n_pad = self.period - (t % self.period)
|
293 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
294 |
+
t = t + n_pad
|
295 |
+
x = x.view(b, c, t // self.period, self.period)
|
296 |
+
|
297 |
+
for l in self.convs:
|
298 |
+
x = l(x)
|
299 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
300 |
+
fmap.append(x)
|
301 |
+
x = self.conv_post(x)
|
302 |
+
fmap.append(x)
|
303 |
+
x = torch.flatten(x, 1, -1)
|
304 |
+
|
305 |
+
return x, fmap
|
306 |
+
|
307 |
+
|
308 |
+
class DiscriminatorS(torch.nn.Module):
|
309 |
+
def __init__(self, use_spectral_norm=False):
|
310 |
+
super(DiscriminatorS, self).__init__()
|
311 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
312 |
+
self.convs = nn.ModuleList([
|
313 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
314 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
315 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
316 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
317 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
318 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
319 |
+
])
|
320 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
321 |
+
|
322 |
+
def forward(self, x):
|
323 |
+
fmap = []
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
339 |
+
periods = [2,3,5,7,11]
|
340 |
+
|
341 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
342 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
343 |
+
self.discriminators = nn.ModuleList(discs)
|
344 |
+
|
345 |
+
def forward(self, y, y_hat):
|
346 |
+
y_d_rs = []
|
347 |
+
y_d_gs = []
|
348 |
+
fmap_rs = []
|
349 |
+
fmap_gs = []
|
350 |
+
for i, d in enumerate(self.discriminators):
|
351 |
+
y_d_r, fmap_r = d(y)
|
352 |
+
y_d_g, fmap_g = d(y_hat)
|
353 |
+
y_d_rs.append(y_d_r)
|
354 |
+
y_d_gs.append(y_d_g)
|
355 |
+
fmap_rs.append(fmap_r)
|
356 |
+
fmap_gs.append(fmap_g)
|
357 |
+
|
358 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
class SynthesizerTrn(nn.Module):
|
363 |
+
"""
|
364 |
+
Synthesizer for Training
|
365 |
+
"""
|
366 |
+
|
367 |
+
def __init__(self,
|
368 |
+
n_vocab,
|
369 |
+
spec_channels,
|
370 |
+
segment_size,
|
371 |
+
inter_channels,
|
372 |
+
hidden_channels,
|
373 |
+
filter_channels,
|
374 |
+
n_heads,
|
375 |
+
n_layers,
|
376 |
+
kernel_size,
|
377 |
+
p_dropout,
|
378 |
+
resblock,
|
379 |
+
resblock_kernel_sizes,
|
380 |
+
resblock_dilation_sizes,
|
381 |
+
upsample_rates,
|
382 |
+
upsample_initial_channel,
|
383 |
+
upsample_kernel_sizes,
|
384 |
+
n_speakers=0,
|
385 |
+
gin_channels=0,
|
386 |
+
use_sdp=True,
|
387 |
+
**kwargs):
|
388 |
+
|
389 |
+
super().__init__()
|
390 |
+
self.n_vocab = n_vocab
|
391 |
+
self.spec_channels = spec_channels
|
392 |
+
self.inter_channels = inter_channels
|
393 |
+
self.hidden_channels = hidden_channels
|
394 |
+
self.filter_channels = filter_channels
|
395 |
+
self.n_heads = n_heads
|
396 |
+
self.n_layers = n_layers
|
397 |
+
self.kernel_size = kernel_size
|
398 |
+
self.p_dropout = p_dropout
|
399 |
+
self.resblock = resblock
|
400 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
401 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
402 |
+
self.upsample_rates = upsample_rates
|
403 |
+
self.upsample_initial_channel = upsample_initial_channel
|
404 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
405 |
+
self.segment_size = segment_size
|
406 |
+
self.n_speakers = n_speakers
|
407 |
+
self.gin_channels = gin_channels
|
408 |
+
|
409 |
+
self.use_sdp = use_sdp
|
410 |
+
|
411 |
+
self.enc_p = TextEncoder(n_vocab,
|
412 |
+
inter_channels,
|
413 |
+
hidden_channels,
|
414 |
+
filter_channels,
|
415 |
+
n_heads,
|
416 |
+
n_layers,
|
417 |
+
kernel_size,
|
418 |
+
p_dropout)
|
419 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
420 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
421 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
422 |
+
|
423 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
424 |
+
|
425 |
+
if n_speakers > 0:
|
426 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
427 |
+
|
428 |
+
def forward(self, x, x_lengths, sid=None, noise_scale=.667, length_scale=1, noise_scale_w=.8, max_len=None):
|
429 |
+
torch.onnx.export(
|
430 |
+
self.enc_p,
|
431 |
+
(x, x_lengths),
|
432 |
+
"ONNX_net/enc_p.onnx",
|
433 |
+
input_names=["x", "x_lengths"],
|
434 |
+
output_names=["xout", "m_p", "logs_p", "x_mask"],
|
435 |
+
dynamic_axes={
|
436 |
+
"x" : [1],
|
437 |
+
"xout" : [2],
|
438 |
+
"m_p" : [2],
|
439 |
+
"logs_p" : [2],
|
440 |
+
"x_mask" : [2]
|
441 |
+
},
|
442 |
+
verbose=True,
|
443 |
+
)
|
444 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
445 |
+
|
446 |
+
if self.n_speakers > 0:
|
447 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
448 |
+
else:
|
449 |
+
g = None
|
450 |
+
|
451 |
+
self.dp.reverse = True
|
452 |
+
self.dp.noise_scale = noise_scale_w
|
453 |
+
torch.onnx.export(
|
454 |
+
self.dp,
|
455 |
+
(x, x_mask, g),
|
456 |
+
"ONNX_net/dp.onnx",
|
457 |
+
input_names=["x", "x_mask", "g"],
|
458 |
+
output_names=["logw"],
|
459 |
+
dynamic_axes={
|
460 |
+
"x" : [2],
|
461 |
+
"x_mask" : [2],
|
462 |
+
"logw" : [2]
|
463 |
+
},
|
464 |
+
verbose=True,
|
465 |
+
)
|
466 |
+
logw = self.dp(x, x_mask, g=g)
|
467 |
+
w = torch.exp(logw) * x_mask * length_scale
|
468 |
+
w_ceil = torch.ceil(w)
|
469 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
470 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
471 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
472 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
473 |
+
|
474 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
475 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
476 |
+
|
477 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
478 |
+
|
479 |
+
self.flow.reverse = True
|
480 |
+
torch.onnx.export(
|
481 |
+
self.flow,
|
482 |
+
(z_p, y_mask, g),
|
483 |
+
"ONNX_net/flow.onnx",
|
484 |
+
input_names=["z_p", "y_mask", "g"],
|
485 |
+
output_names=["z"],
|
486 |
+
dynamic_axes={
|
487 |
+
"z_p" : [2],
|
488 |
+
"y_mask" : [2],
|
489 |
+
"z" : [2]
|
490 |
+
},
|
491 |
+
verbose=True,
|
492 |
+
)
|
493 |
+
z = self.flow(z_p, y_mask, g=g)
|
494 |
+
z_in = (z * y_mask)[:,:,:max_len]
|
495 |
+
|
496 |
+
torch.onnx.export(
|
497 |
+
self.dec,
|
498 |
+
(z_in, g),
|
499 |
+
"ONNX_net/dec.onnx",
|
500 |
+
input_names=["z_in", "g"],
|
501 |
+
output_names=["o"],
|
502 |
+
dynamic_axes={
|
503 |
+
"z_in" : [2],
|
504 |
+
"o" : [2]
|
505 |
+
},
|
506 |
+
verbose=True,
|
507 |
+
)
|
508 |
+
o = self.dec(z_in, g=g)
|
509 |
+
return o
|
ONNXVITS_modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from ONNXVITS_transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
ONNXVITS_to_onnx.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ONNXVITS_models
|
2 |
+
import utils
|
3 |
+
from text import text_to_sequence
|
4 |
+
import torch
|
5 |
+
import commons
|
6 |
+
|
7 |
+
def get_text(text, hps):
|
8 |
+
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
9 |
+
if hps.data.add_blank:
|
10 |
+
text_norm = commons.intersperse(text_norm, 0)
|
11 |
+
text_norm = torch.LongTensor(text_norm)
|
12 |
+
return text_norm
|
13 |
+
|
14 |
+
hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json")
|
15 |
+
symbols = hps.symbols
|
16 |
+
net_g = ONNXVITS_models.SynthesizerTrn(
|
17 |
+
len(symbols),
|
18 |
+
hps.data.filter_length // 2 + 1,
|
19 |
+
hps.train.segment_size // hps.data.hop_length,
|
20 |
+
n_speakers=hps.data.n_speakers,
|
21 |
+
**hps.model)
|
22 |
+
_ = net_g.eval()
|
23 |
+
_ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g)
|
24 |
+
|
25 |
+
text1 = get_text("ありがとうございます。", hps)
|
26 |
+
stn_tst = text1
|
27 |
+
with torch.no_grad():
|
28 |
+
x_tst = stn_tst.unsqueeze(0)
|
29 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
30 |
+
sid = torch.tensor([0])
|
31 |
+
o = net_g(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)
|
ONNXVITS_transforms.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
#unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
unnormalized_derivatives_ = torch.zeros((1, 1, unnormalized_derivatives.size(2), unnormalized_derivatives.size(3)+2))
|
74 |
+
unnormalized_derivatives_[...,1:-1] = unnormalized_derivatives
|
75 |
+
unnormalized_derivatives = unnormalized_derivatives_
|
76 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
77 |
+
unnormalized_derivatives[..., 0] = constant
|
78 |
+
unnormalized_derivatives[..., -1] = constant
|
79 |
+
|
80 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
81 |
+
logabsdet[outside_interval_mask] = 0
|
82 |
+
else:
|
83 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
84 |
+
|
85 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
86 |
+
inputs=inputs[inside_interval_mask],
|
87 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
88 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
89 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
90 |
+
inverse=inverse,
|
91 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
92 |
+
min_bin_width=min_bin_width,
|
93 |
+
min_bin_height=min_bin_height,
|
94 |
+
min_derivative=min_derivative
|
95 |
+
)
|
96 |
+
|
97 |
+
return outputs, logabsdet
|
98 |
+
|
99 |
+
def rational_quadratic_spline(inputs,
|
100 |
+
unnormalized_widths,
|
101 |
+
unnormalized_heights,
|
102 |
+
unnormalized_derivatives,
|
103 |
+
inverse=False,
|
104 |
+
left=0., right=1., bottom=0., top=1.,
|
105 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
106 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
107 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
108 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
109 |
+
raise ValueError('Input to a transform is not within its domain')
|
110 |
+
|
111 |
+
num_bins = unnormalized_widths.shape[-1]
|
112 |
+
|
113 |
+
if min_bin_width * num_bins > 1.0:
|
114 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
115 |
+
if min_bin_height * num_bins > 1.0:
|
116 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
117 |
+
|
118 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
119 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
120 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
121 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
122 |
+
cumwidths = (right - left) * cumwidths + left
|
123 |
+
cumwidths[..., 0] = left
|
124 |
+
cumwidths[..., -1] = right
|
125 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
126 |
+
|
127 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
128 |
+
|
129 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
130 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
131 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
132 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
133 |
+
cumheights = (top - bottom) * cumheights + bottom
|
134 |
+
cumheights[..., 0] = bottom
|
135 |
+
cumheights[..., -1] = top
|
136 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
137 |
+
|
138 |
+
if inverse:
|
139 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
140 |
+
else:
|
141 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
142 |
+
|
143 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
144 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
145 |
+
|
146 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
147 |
+
delta = heights / widths
|
148 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
151 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
152 |
+
|
153 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
154 |
+
|
155 |
+
if inverse:
|
156 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
157 |
+
+ input_derivatives_plus_one
|
158 |
+
- 2 * input_delta)
|
159 |
+
+ input_heights * (input_delta - input_derivatives)))
|
160 |
+
b = (input_heights * input_derivatives
|
161 |
+
- (inputs - input_cumheights) * (input_derivatives
|
162 |
+
+ input_derivatives_plus_one
|
163 |
+
- 2 * input_delta))
|
164 |
+
c = - input_delta * (inputs - input_cumheights)
|
165 |
+
|
166 |
+
discriminant = b.pow(2) - 4 * a * c
|
167 |
+
assert (discriminant >= 0).all()
|
168 |
+
|
169 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
170 |
+
outputs = root * input_bin_widths + input_cumwidths
|
171 |
+
|
172 |
+
theta_one_minus_theta = root * (1 - root)
|
173 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
174 |
+
* theta_one_minus_theta)
|
175 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
176 |
+
+ 2 * input_delta * theta_one_minus_theta
|
177 |
+
+ input_derivatives * (1 - root).pow(2))
|
178 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
179 |
+
|
180 |
+
return outputs, -logabsdet
|
181 |
+
else:
|
182 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
183 |
+
theta_one_minus_theta = theta * (1 - theta)
|
184 |
+
|
185 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
186 |
+
+ input_derivatives * theta_one_minus_theta)
|
187 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
188 |
+
* theta_one_minus_theta)
|
189 |
+
outputs = input_cumheights + numerator / denominator
|
190 |
+
|
191 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
192 |
+
+ 2 * input_delta * theta_one_minus_theta
|
193 |
+
+ input_derivatives * (1 - theta).pow(2))
|
194 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
195 |
+
|
196 |
+
return outputs, logabsdet
|
ONNXVITS_utils.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import onnxruntime as ort
|
5 |
+
def set_random_seed(seed=0):
|
6 |
+
ort.set_seed(seed)
|
7 |
+
torch.manual_seed(seed)
|
8 |
+
torch.cuda.manual_seed(seed)
|
9 |
+
torch.backends.cudnn.deterministic = True
|
10 |
+
random.seed(seed)
|
11 |
+
np.random.seed(seed)
|
12 |
+
|
13 |
+
def runonnx(model_path, **kwargs):
|
14 |
+
ort_session = ort.InferenceSession(model_path)
|
15 |
+
outputs = ort_session.run(
|
16 |
+
None,
|
17 |
+
kwargs
|
18 |
+
)
|
19 |
+
return outputs
|
ONNX_net/dec.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f5b6cd61faabd9606d85dccf5a2b9720a95fc0d9f4a93c80b5be43764816a81
|
3 |
+
size 58183684
|
ONNX_net/dp.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06fd386f4d2c75fb54d0092db4fa35b64bc22741c1a9e5431fb99b24fa067fcd
|
3 |
+
size 7387023
|
ONNX_net/enc_p.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:270154c4d7d8f1a16480990cf08085526d39818aabd94bf5204efe7e9c5615d1
|
3 |
+
size 28510879
|
ONNX_net/flow.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10ec205d80f5dfbfe5ed8ef3a8aa4ffbe126b7e8fcf05e1eb64d73793aeec011
|
3 |
+
size 35707325
|
attentions.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
-
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
7 |
|
8 |
import commons
|
9 |
-
import modules
|
10 |
from modules import LayerNorm
|
11 |
|
12 |
|
|
|
|
|
1 |
import math
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torch.nn import functional as F
|
5 |
|
6 |
import commons
|
|
|
7 |
from modules import LayerNorm
|
8 |
|
9 |
|
commons.py
CHANGED
@@ -1,8 +1,19 @@
|
|
1 |
import math
|
2 |
-
import numpy as np
|
3 |
import torch
|
4 |
-
from torch import nn
|
5 |
from torch.nn import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def init_weights(m, mean=0.0, std=0.01):
|
@@ -15,36 +26,12 @@ def get_padding(kernel_size, dilation=1):
|
|
15 |
return int((kernel_size*dilation - dilation)/2)
|
16 |
|
17 |
|
18 |
-
def convert_pad_shape(pad_shape):
|
19 |
-
l = pad_shape[::-1]
|
20 |
-
pad_shape = [item for sublist in l for item in sublist]
|
21 |
-
return pad_shape
|
22 |
-
|
23 |
-
|
24 |
def intersperse(lst, item):
|
25 |
result = [item] * (len(lst) * 2 + 1)
|
26 |
result[1::2] = lst
|
27 |
return result
|
28 |
|
29 |
|
30 |
-
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
-
"""KL(P||Q)"""
|
32 |
-
kl = (logs_q - logs_p) - 0.5
|
33 |
-
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
-
return kl
|
35 |
-
|
36 |
-
|
37 |
-
def rand_gumbel(shape):
|
38 |
-
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
-
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
-
return -torch.log(-torch.log(uniform_samples))
|
41 |
-
|
42 |
-
|
43 |
-
def rand_gumbel_like(x):
|
44 |
-
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
-
return g
|
46 |
-
|
47 |
-
|
48 |
def slice_segments(x, ids_str, segment_size=4):
|
49 |
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
for i in range(x.size(0)):
|
@@ -64,34 +51,6 @@ def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
|
64 |
return ret, ids_str
|
65 |
|
66 |
|
67 |
-
def get_timing_signal_1d(
|
68 |
-
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
69 |
-
position = torch.arange(length, dtype=torch.float)
|
70 |
-
num_timescales = channels // 2
|
71 |
-
log_timescale_increment = (
|
72 |
-
math.log(float(max_timescale) / float(min_timescale)) /
|
73 |
-
(num_timescales - 1))
|
74 |
-
inv_timescales = min_timescale * torch.exp(
|
75 |
-
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
76 |
-
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
-
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
-
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
-
signal = signal.view(1, channels, length)
|
80 |
-
return signal
|
81 |
-
|
82 |
-
|
83 |
-
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
-
b, channels, length = x.size()
|
85 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
-
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
-
|
88 |
-
|
89 |
-
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
-
b, channels, length = x.size()
|
91 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
-
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
-
|
94 |
-
|
95 |
def subsequent_mask(length):
|
96 |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
return mask
|
@@ -113,11 +72,6 @@ def convert_pad_shape(pad_shape):
|
|
113 |
return pad_shape
|
114 |
|
115 |
|
116 |
-
def shift_1d(x):
|
117 |
-
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
-
return x
|
119 |
-
|
120 |
-
|
121 |
def sequence_mask(length, max_length=None):
|
122 |
if max_length is None:
|
123 |
max_length = length.max()
|
@@ -141,21 +95,3 @@ def generate_path(duration, mask):
|
|
141 |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
142 |
path = path.unsqueeze(1).transpose(2,3) * mask
|
143 |
return path
|
144 |
-
|
145 |
-
|
146 |
-
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
-
if isinstance(parameters, torch.Tensor):
|
148 |
-
parameters = [parameters]
|
149 |
-
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
-
norm_type = float(norm_type)
|
151 |
-
if clip_value is not None:
|
152 |
-
clip_value = float(clip_value)
|
153 |
-
|
154 |
-
total_norm = 0
|
155 |
-
for p in parameters:
|
156 |
-
param_norm = p.grad.data.norm(norm_type)
|
157 |
-
total_norm += param_norm.item() ** norm_type
|
158 |
-
if clip_value is not None:
|
159 |
-
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
-
total_norm = total_norm ** (1. / norm_type)
|
161 |
-
return total_norm
|
|
|
1 |
import math
|
|
|
2 |
import torch
|
|
|
3 |
from torch.nn import functional as F
|
4 |
+
import torch.jit
|
5 |
+
|
6 |
+
|
7 |
+
def script_method(fn, _rcb=None):
|
8 |
+
return fn
|
9 |
+
|
10 |
+
|
11 |
+
def script(obj, optimize=True, _frames_up=0, _rcb=None):
|
12 |
+
return obj
|
13 |
+
|
14 |
+
|
15 |
+
torch.jit.script_method = script_method
|
16 |
+
torch.jit.script = script
|
17 |
|
18 |
|
19 |
def init_weights(m, mean=0.0, std=0.01):
|
|
|
26 |
return int((kernel_size*dilation - dilation)/2)
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def intersperse(lst, item):
|
30 |
result = [item] * (len(lst) * 2 + 1)
|
31 |
result[1::2] = lst
|
32 |
return result
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def slice_segments(x, ids_str, segment_size=4):
|
36 |
ret = torch.zeros_like(x[:, :, :segment_size])
|
37 |
for i in range(x.size(0)):
|
|
|
51 |
return ret, ids_str
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def subsequent_mask(length):
|
55 |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
56 |
return mask
|
|
|
72 |
return pad_shape
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
75 |
def sequence_mask(length, max_length=None):
|
76 |
if max_length is None:
|
77 |
max_length = length.max()
|
|
|
95 |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
96 |
path = path.unsqueeze(1).transpose(2,3) * mask
|
97 |
return path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hubert_model.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
import random
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
class Hubert(nn.Module):
|
11 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
12 |
+
super().__init__()
|
13 |
+
self._mask = mask
|
14 |
+
self.feature_extractor = FeatureExtractor()
|
15 |
+
self.feature_projection = FeatureProjection()
|
16 |
+
self.positional_embedding = PositionalConvEmbedding()
|
17 |
+
self.norm = nn.LayerNorm(768)
|
18 |
+
self.dropout = nn.Dropout(0.1)
|
19 |
+
self.encoder = TransformerEncoder(
|
20 |
+
nn.TransformerEncoderLayer(
|
21 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
22 |
+
),
|
23 |
+
12,
|
24 |
+
)
|
25 |
+
self.proj = nn.Linear(768, 256)
|
26 |
+
|
27 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
28 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
29 |
+
|
30 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
31 |
+
mask = None
|
32 |
+
if self.training and self._mask:
|
33 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
34 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
35 |
+
return x, mask
|
36 |
+
|
37 |
+
def encode(
|
38 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
39 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
40 |
+
x = self.feature_extractor(x)
|
41 |
+
x = self.feature_projection(x.transpose(1, 2))
|
42 |
+
x, mask = self.mask(x)
|
43 |
+
x = x + self.positional_embedding(x)
|
44 |
+
x = self.dropout(self.norm(x))
|
45 |
+
x = self.encoder(x, output_layer=layer)
|
46 |
+
return x, mask
|
47 |
+
|
48 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
+
logits = torch.cosine_similarity(
|
50 |
+
x.unsqueeze(2),
|
51 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
52 |
+
dim=-1,
|
53 |
+
)
|
54 |
+
return logits / 0.1
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
57 |
+
x, mask = self.encode(x)
|
58 |
+
x = self.proj(x)
|
59 |
+
logits = self.logits(x)
|
60 |
+
return logits, mask
|
61 |
+
|
62 |
+
|
63 |
+
class HubertSoft(Hubert):
|
64 |
+
def __init__(self):
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
@torch.inference_mode()
|
68 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
69 |
+
wav = F.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
70 |
+
x, _ = self.encode(wav)
|
71 |
+
return self.proj(x)
|
72 |
+
|
73 |
+
|
74 |
+
class FeatureExtractor(nn.Module):
|
75 |
+
def __init__(self):
|
76 |
+
super().__init__()
|
77 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
78 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
79 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
80 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
81 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
82 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
83 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
84 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
85 |
+
|
86 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
87 |
+
x = F.gelu(self.norm0(self.conv0(x)))
|
88 |
+
x = F.gelu(self.conv1(x))
|
89 |
+
x = F.gelu(self.conv2(x))
|
90 |
+
x = F.gelu(self.conv3(x))
|
91 |
+
x = F.gelu(self.conv4(x))
|
92 |
+
x = F.gelu(self.conv5(x))
|
93 |
+
x = F.gelu(self.conv6(x))
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class FeatureProjection(nn.Module):
|
98 |
+
def __init__(self):
|
99 |
+
super().__init__()
|
100 |
+
self.norm = nn.LayerNorm(512)
|
101 |
+
self.projection = nn.Linear(512, 768)
|
102 |
+
self.dropout = nn.Dropout(0.1)
|
103 |
+
|
104 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
105 |
+
x = self.norm(x)
|
106 |
+
x = self.projection(x)
|
107 |
+
x = self.dropout(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
class PositionalConvEmbedding(nn.Module):
|
112 |
+
def __init__(self):
|
113 |
+
super().__init__()
|
114 |
+
self.conv = nn.Conv1d(
|
115 |
+
768,
|
116 |
+
768,
|
117 |
+
kernel_size=128,
|
118 |
+
padding=128 // 2,
|
119 |
+
groups=16,
|
120 |
+
)
|
121 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
122 |
+
|
123 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
124 |
+
x = self.conv(x.transpose(1, 2))
|
125 |
+
x = F.gelu(x[:, :, :-1])
|
126 |
+
return x.transpose(1, 2)
|
127 |
+
|
128 |
+
|
129 |
+
class TransformerEncoder(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
132 |
+
) -> None:
|
133 |
+
super(TransformerEncoder, self).__init__()
|
134 |
+
self.layers = nn.ModuleList(
|
135 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
136 |
+
)
|
137 |
+
self.num_layers = num_layers
|
138 |
+
|
139 |
+
def forward(
|
140 |
+
self,
|
141 |
+
src: torch.Tensor,
|
142 |
+
mask: torch.Tensor = None,
|
143 |
+
src_key_padding_mask: torch.Tensor = None,
|
144 |
+
output_layer: Optional[int] = None,
|
145 |
+
) -> torch.Tensor:
|
146 |
+
output = src
|
147 |
+
for layer in self.layers[:output_layer]:
|
148 |
+
output = layer(
|
149 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
150 |
+
)
|
151 |
+
return output
|
152 |
+
|
153 |
+
|
154 |
+
def _compute_mask(
|
155 |
+
shape: Tuple[int, int],
|
156 |
+
mask_prob: float,
|
157 |
+
mask_length: int,
|
158 |
+
device: torch.device,
|
159 |
+
min_masks: int = 0,
|
160 |
+
) -> torch.Tensor:
|
161 |
+
batch_size, sequence_length = shape
|
162 |
+
|
163 |
+
if mask_length < 1:
|
164 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
165 |
+
|
166 |
+
if mask_length > sequence_length:
|
167 |
+
raise ValueError(
|
168 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
169 |
+
)
|
170 |
+
|
171 |
+
# compute number of masked spans in batch
|
172 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
173 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
174 |
+
|
175 |
+
# make sure num masked indices <= sequence_length
|
176 |
+
if num_masked_spans * mask_length > sequence_length:
|
177 |
+
num_masked_spans = sequence_length // mask_length
|
178 |
+
|
179 |
+
# SpecAugment mask to fill
|
180 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
181 |
+
|
182 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
183 |
+
uniform_dist = torch.ones(
|
184 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
185 |
+
)
|
186 |
+
|
187 |
+
# get random indices to mask
|
188 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
189 |
+
|
190 |
+
# expand masked indices to masked spans
|
191 |
+
mask_indices = (
|
192 |
+
mask_indices.unsqueeze(dim=-1)
|
193 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
194 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
195 |
+
)
|
196 |
+
offsets = (
|
197 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
198 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
199 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
200 |
+
)
|
201 |
+
mask_idxs = mask_indices + offsets
|
202 |
+
|
203 |
+
# scatter indices to mask
|
204 |
+
mask = mask.scatter(1, mask_idxs, True)
|
205 |
+
|
206 |
+
return mask
|
207 |
+
|
208 |
+
|
209 |
+
def hubert_soft(
|
210 |
+
path: str
|
211 |
+
) -> HubertSoft:
|
212 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
213 |
+
Args:
|
214 |
+
path (str): path of a pretrained model
|
215 |
+
"""
|
216 |
+
hubert = HubertSoft()
|
217 |
+
checkpoint = torch.load(path)
|
218 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
219 |
+
hubert.load_state_dict(checkpoint)
|
220 |
+
hubert.eval()
|
221 |
+
return hubert
|
jieba/dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mel_processing.py
CHANGED
@@ -1,16 +1,5 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
import random
|
4 |
import torch
|
5 |
-
from torch import nn
|
6 |
-
import torch.nn.functional as F
|
7 |
import torch.utils.data
|
8 |
-
import numpy as np
|
9 |
-
import librosa
|
10 |
-
import librosa.util as librosa_util
|
11 |
-
from librosa.util import normalize, pad_center, tiny
|
12 |
-
from scipy.signal import get_window
|
13 |
-
from scipy.io.wavfile import read
|
14 |
from librosa.filters import mel as librosa_mel_fn
|
15 |
|
16 |
MAX_WAV_VALUE = 32768.0
|
@@ -64,7 +53,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|
64 |
y = y.squeeze(1)
|
65 |
|
66 |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
68 |
|
69 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
return spec
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import torch.utils.data
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from librosa.filters import mel as librosa_mel_fn
|
4 |
|
5 |
MAX_WAV_VALUE = 32768.0
|
|
|
53 |
y = y.squeeze(1)
|
54 |
|
55 |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
56 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
57 |
|
58 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
59 |
return spec
|
models.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
import torch
|
4 |
from torch import nn
|
@@ -7,9 +6,9 @@ from torch.nn import functional as F
|
|
7 |
import commons
|
8 |
import modules
|
9 |
import attentions
|
10 |
-
|
11 |
|
12 |
-
from torch.nn import Conv1d, ConvTranspose1d,
|
13 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
from commons import init_weights, get_padding
|
15 |
|
@@ -141,7 +140,8 @@ class TextEncoder(nn.Module):
|
|
141 |
n_heads,
|
142 |
n_layers,
|
143 |
kernel_size,
|
144 |
-
p_dropout
|
|
|
145 |
super().__init__()
|
146 |
self.n_vocab = n_vocab
|
147 |
self.out_channels = out_channels
|
@@ -151,9 +151,13 @@ class TextEncoder(nn.Module):
|
|
151 |
self.n_layers = n_layers
|
152 |
self.kernel_size = kernel_size
|
153 |
self.p_dropout = p_dropout
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
|
158 |
self.encoder = attentions.Encoder(
|
159 |
hidden_channels,
|
@@ -164,8 +168,11 @@ class TextEncoder(nn.Module):
|
|
164 |
p_dropout)
|
165 |
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
|
167 |
-
def forward(self, x, x_lengths):
|
168 |
-
|
|
|
|
|
|
|
169 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
|
@@ -412,6 +419,7 @@ class SynthesizerTrn(nn.Module):
|
|
412 |
n_speakers=0,
|
413 |
gin_channels=0,
|
414 |
use_sdp=True,
|
|
|
415 |
**kwargs):
|
416 |
|
417 |
super().__init__()
|
@@ -443,7 +451,8 @@ class SynthesizerTrn(nn.Module):
|
|
443 |
n_heads,
|
444 |
n_layers,
|
445 |
kernel_size,
|
446 |
-
p_dropout
|
|
|
447 |
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
@@ -496,8 +505,8 @@ class SynthesizerTrn(nn.Module):
|
|
496 |
o = self.dec(z_slice, g=g)
|
497 |
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
|
499 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
if self.n_speakers > 0:
|
502 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
else:
|
|
|
|
|
1 |
import math
|
2 |
import torch
|
3 |
from torch import nn
|
|
|
6 |
import commons
|
7 |
import modules
|
8 |
import attentions
|
9 |
+
import monotonic_align
|
10 |
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
from commons import init_weights, get_padding
|
14 |
|
|
|
140 |
n_heads,
|
141 |
n_layers,
|
142 |
kernel_size,
|
143 |
+
p_dropout,
|
144 |
+
emotion_embedding):
|
145 |
super().__init__()
|
146 |
self.n_vocab = n_vocab
|
147 |
self.out_channels = out_channels
|
|
|
151 |
self.n_layers = n_layers
|
152 |
self.kernel_size = kernel_size
|
153 |
self.p_dropout = p_dropout
|
154 |
+
self.emotion_embedding = emotion_embedding
|
155 |
+
|
156 |
+
if self.n_vocab!=0:
|
157 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
158 |
+
if emotion_embedding:
|
159 |
+
self.emotion_emb = nn.Linear(1024, hidden_channels)
|
160 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
161 |
|
162 |
self.encoder = attentions.Encoder(
|
163 |
hidden_channels,
|
|
|
168 |
p_dropout)
|
169 |
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
170 |
|
171 |
+
def forward(self, x, x_lengths, emotion_embedding=None):
|
172 |
+
if self.n_vocab!=0:
|
173 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
174 |
+
if emotion_embedding is not None:
|
175 |
+
x = x + self.emotion_emb(emotion_embedding.unsqueeze(1))
|
176 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
177 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
178 |
|
|
|
419 |
n_speakers=0,
|
420 |
gin_channels=0,
|
421 |
use_sdp=True,
|
422 |
+
emotion_embedding=False,
|
423 |
**kwargs):
|
424 |
|
425 |
super().__init__()
|
|
|
451 |
n_heads,
|
452 |
n_layers,
|
453 |
kernel_size,
|
454 |
+
p_dropout,
|
455 |
+
emotion_embedding)
|
456 |
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
457 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
458 |
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
|
|
505 |
o = self.dec(z_slice, g=g)
|
506 |
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
507 |
|
508 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None):
|
509 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
|
510 |
if self.n_speakers > 0:
|
511 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
512 |
else:
|
modules.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
-
import numpy as np
|
4 |
-
import scipy
|
5 |
import torch
|
6 |
from torch import nn
|
7 |
from torch.nn import functional as F
|
8 |
|
9 |
-
from torch.nn import Conv1d
|
10 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
|
12 |
import commons
|
|
|
|
|
1 |
import math
|
|
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torch.nn import functional as F
|
5 |
|
6 |
+
from torch.nn import Conv1d
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
|
9 |
import commons
|
text/__init__.py
CHANGED
@@ -1,14 +1,8 @@
|
|
1 |
""" from https://github.com/keithito/tacotron """
|
2 |
from text import cleaners
|
3 |
-
from text.symbols import symbols
|
4 |
|
5 |
|
6 |
-
|
7 |
-
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
-
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
-
|
10 |
-
|
11 |
-
def text_to_sequence(text, cleaner_names):
|
12 |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
Args:
|
14 |
text: string to convert to a sequence
|
@@ -16,6 +10,8 @@ def text_to_sequence(text, cleaner_names):
|
|
16 |
Returns:
|
17 |
List of integers corresponding to the symbols in the text
|
18 |
'''
|
|
|
|
|
19 |
sequence = []
|
20 |
|
21 |
clean_text = _clean_text(text, cleaner_names)
|
@@ -27,26 +23,6 @@ def text_to_sequence(text, cleaner_names):
|
|
27 |
return sequence
|
28 |
|
29 |
|
30 |
-
def cleaned_text_to_sequence(cleaned_text):
|
31 |
-
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
32 |
-
Args:
|
33 |
-
text: string to convert to a sequence
|
34 |
-
Returns:
|
35 |
-
List of integers corresponding to the symbols in the text
|
36 |
-
'''
|
37 |
-
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
|
38 |
-
return sequence
|
39 |
-
|
40 |
-
|
41 |
-
def sequence_to_text(sequence):
|
42 |
-
'''Converts a sequence of IDs back to a string'''
|
43 |
-
result = ''
|
44 |
-
for symbol_id in sequence:
|
45 |
-
s = _id_to_symbol[symbol_id]
|
46 |
-
result += s
|
47 |
-
return result
|
48 |
-
|
49 |
-
|
50 |
def _clean_text(text, cleaner_names):
|
51 |
for name in cleaner_names:
|
52 |
cleaner = getattr(cleaners, name)
|
|
|
1 |
""" from https://github.com/keithito/tacotron """
|
2 |
from text import cleaners
|
|
|
3 |
|
4 |
|
5 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
|
|
|
|
|
|
|
|
|
|
6 |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
Args:
|
8 |
text: string to convert to a sequence
|
|
|
10 |
Returns:
|
11 |
List of integers corresponding to the symbols in the text
|
12 |
'''
|
13 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
+
|
15 |
sequence = []
|
16 |
|
17 |
clean_text = _clean_text(text, cleaner_names)
|
|
|
23 |
return sequence
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def _clean_text(text, cleaner_names):
|
27 |
for name in cleaner_names:
|
28 |
cleaner = getattr(cleaners, name)
|
text/__pycache__/__init__.cpython-37.pyc
CHANGED
Binary files a/text/__pycache__/__init__.cpython-37.pyc and b/text/__pycache__/__init__.cpython-37.pyc differ
|
|
text/__pycache__/cleaners.cpython-37.pyc
CHANGED
Binary files a/text/__pycache__/cleaners.cpython-37.pyc and b/text/__pycache__/cleaners.cpython-37.pyc differ
|
|
text/__pycache__/japanese.cpython-37.pyc
CHANGED
Binary files a/text/__pycache__/japanese.cpython-37.pyc and b/text/__pycache__/japanese.cpython-37.pyc differ
|
|
text/cleaners.py
CHANGED
@@ -1,12 +1,8 @@
|
|
1 |
import re
|
2 |
-
from text.japanese import japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
|
3 |
-
|
4 |
-
# from text.shanghainese import shanghainese_to_ipa
|
5 |
-
# from text.cantonese import cantonese_to_ipa
|
6 |
-
# from text.ngu_dialect import ngu_dialect_to_ipa
|
7 |
|
8 |
|
9 |
def japanese_cleaners(text):
|
|
|
10 |
text = japanese_to_romaji_with_accent(text)
|
11 |
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
12 |
return text
|
@@ -16,28 +12,135 @@ def japanese_cleaners2(text):
|
|
16 |
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
def japanese_cleaners(text):
|
5 |
+
from text.japanese import japanese_to_romaji_with_accent
|
6 |
text = japanese_to_romaji_with_accent(text)
|
7 |
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
8 |
return text
|
|
|
12 |
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
13 |
|
14 |
|
15 |
+
def korean_cleaners(text):
|
16 |
+
'''Pipeline for Korean text'''
|
17 |
+
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
|
18 |
+
text = latin_to_hangul(text)
|
19 |
+
text = number_to_hangul(text)
|
20 |
+
text = divide_hangul(text)
|
21 |
+
text = re.sub(r'([\u3131-\u3163])$', r'\1.', text)
|
22 |
+
return text
|
23 |
+
|
24 |
+
|
25 |
+
def chinese_cleaners(text):
|
26 |
+
'''Pipeline for Chinese text'''
|
27 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
|
28 |
+
text = number_to_chinese(text)
|
29 |
+
text = chinese_to_bopomofo(text)
|
30 |
+
text = latin_to_bopomofo(text)
|
31 |
+
text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
|
32 |
+
return text
|
33 |
+
|
34 |
+
|
35 |
+
def zh_ja_mixture_cleaners(text):
|
36 |
+
from text.mandarin import chinese_to_romaji
|
37 |
+
from text.japanese import japanese_to_romaji_with_accent
|
38 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
39 |
+
lambda x: chinese_to_romaji(x.group(1))+' ', text)
|
40 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent(
|
41 |
+
x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')+' ', text)
|
42 |
+
text = re.sub(r'\s+$', '', text)
|
43 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
44 |
+
return text
|
45 |
+
|
46 |
+
|
47 |
+
def sanskrit_cleaners(text):
|
48 |
+
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
49 |
+
if text[-1] != '।':
|
50 |
+
text += ' ।'
|
51 |
+
return text
|
52 |
+
|
53 |
+
|
54 |
+
def cjks_cleaners(text):
|
55 |
+
from text.mandarin import chinese_to_lazy_ipa
|
56 |
+
from text.japanese import japanese_to_ipa
|
57 |
+
from text.korean import korean_to_lazy_ipa
|
58 |
+
from text.sanskrit import devanagari_to_ipa
|
59 |
+
from text.english import english_to_lazy_ipa
|
60 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
61 |
+
lambda x: chinese_to_lazy_ipa(x.group(1))+' ', text)
|
62 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
63 |
+
lambda x: japanese_to_ipa(x.group(1))+' ', text)
|
64 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
65 |
+
lambda x: korean_to_lazy_ipa(x.group(1))+' ', text)
|
66 |
+
text = re.sub(r'\[SA\](.*?)\[SA\]',
|
67 |
+
lambda x: devanagari_to_ipa(x.group(1))+' ', text)
|
68 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
69 |
+
lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
|
70 |
+
text = re.sub(r'\s+$', '', text)
|
71 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
def cjke_cleaners(text):
|
76 |
+
from text.mandarin import chinese_to_lazy_ipa
|
77 |
+
from text.japanese import japanese_to_ipa
|
78 |
+
from text.korean import korean_to_ipa
|
79 |
+
from text.english import english_to_ipa2
|
80 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]', lambda x: chinese_to_lazy_ipa(x.group(1)).replace(
|
81 |
+
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')+' ', text)
|
82 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_ipa(x.group(1)).replace('ʧ', 'tʃ').replace(
|
83 |
+
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')+' ', text)
|
84 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
85 |
+
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
86 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]', lambda x: english_to_ipa2(x.group(1)).replace('ɑ', 'a').replace(
|
87 |
+
'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')+' ', text)
|
88 |
+
text = re.sub(r'\s+$', '', text)
|
89 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
90 |
+
return text
|
91 |
+
|
92 |
+
|
93 |
+
def cjke_cleaners2(text):
|
94 |
+
from text.mandarin import chinese_to_ipa
|
95 |
+
from text.japanese import japanese_to_ipa2
|
96 |
+
from text.korean import korean_to_ipa
|
97 |
+
from text.english import english_to_ipa2
|
98 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
99 |
+
lambda x: chinese_to_ipa(x.group(1))+' ', text)
|
100 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
101 |
+
lambda x: japanese_to_ipa2(x.group(1))+' ', text)
|
102 |
+
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
103 |
+
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
104 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
105 |
+
lambda x: english_to_ipa2(x.group(1))+' ', text)
|
106 |
+
text = re.sub(r'\s+$', '', text)
|
107 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
108 |
+
return text
|
109 |
+
|
110 |
|
111 |
+
def thai_cleaners(text):
|
112 |
+
from text.thai import num_to_thai, latin_to_thai
|
113 |
+
text = num_to_thai(text)
|
114 |
+
text = latin_to_thai(text)
|
115 |
+
return text
|
116 |
|
117 |
|
118 |
+
def shanghainese_cleaners(text):
|
119 |
+
from text.shanghainese import shanghainese_to_ipa
|
120 |
+
text = shanghainese_to_ipa(text)
|
121 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
122 |
+
return text
|
123 |
|
124 |
|
125 |
+
def chinese_dialect_cleaners(text):
|
126 |
+
from text.mandarin import chinese_to_ipa2
|
127 |
+
from text.japanese import japanese_to_ipa3
|
128 |
+
from text.shanghainese import shanghainese_to_ipa
|
129 |
+
from text.cantonese import cantonese_to_ipa
|
130 |
+
from text.english import english_to_lazy_ipa2
|
131 |
+
from text.ngu_dialect import ngu_dialect_to_ipa
|
132 |
+
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
133 |
+
lambda x: chinese_to_ipa2(x.group(1))+' ', text)
|
134 |
+
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
135 |
+
lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
|
136 |
+
text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
|
137 |
+
'˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
|
138 |
+
text = re.sub(r'\[GD\](.*?)\[GD\]',
|
139 |
+
lambda x: cantonese_to_ipa(x.group(1))+' ', text)
|
140 |
+
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
141 |
+
lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
|
142 |
+
text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
|
143 |
+
1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
|
144 |
+
text = re.sub(r'\s+$', '', text)
|
145 |
+
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
146 |
+
return text
|
text/mandarin.py
CHANGED
@@ -6,6 +6,10 @@ import jieba
|
|
6 |
import cn2an
|
7 |
import logging
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# List of (Latin alphabet, bopomofo) pairs:
|
11 |
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
|
|
6 |
import cn2an
|
7 |
import logging
|
8 |
|
9 |
+
logging.getLogger('jieba').setLevel(logging.WARNING)
|
10 |
+
jieba.set_dictionary(os.path.dirname(sys.argv[0])+'/jieba/dict.txt')
|
11 |
+
jieba.initialize()
|
12 |
+
|
13 |
|
14 |
# List of (Latin alphabet, bopomofo) pairs:
|
15 |
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
text/thai.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from num_thai.thainumbers import NumThai
|
3 |
+
|
4 |
+
|
5 |
+
num = NumThai()
|
6 |
+
|
7 |
+
# List of (Latin alphabet, Thai) pairs:
|
8 |
+
_latin_to_thai = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
9 |
+
('a', 'เอ'),
|
10 |
+
('b','บี'),
|
11 |
+
('c','ซี'),
|
12 |
+
('d','ดี'),
|
13 |
+
('e','อี'),
|
14 |
+
('f','เอฟ'),
|
15 |
+
('g','จี'),
|
16 |
+
('h','เอช'),
|
17 |
+
('i','ไอ'),
|
18 |
+
('j','เจ'),
|
19 |
+
('k','เค'),
|
20 |
+
('l','แอล'),
|
21 |
+
('m','เอ็ม'),
|
22 |
+
('n','เอ็น'),
|
23 |
+
('o','โอ'),
|
24 |
+
('p','พี'),
|
25 |
+
('q','คิว'),
|
26 |
+
('r','แอร์'),
|
27 |
+
('s','เอส'),
|
28 |
+
('t','ที'),
|
29 |
+
('u','ยู'),
|
30 |
+
('v','วี'),
|
31 |
+
('w','ดับเบิลยู'),
|
32 |
+
('x','เอ็กซ์'),
|
33 |
+
('y','วาย'),
|
34 |
+
('z','ซี')
|
35 |
+
]]
|
36 |
+
|
37 |
+
|
38 |
+
def num_to_thai(text):
|
39 |
+
return re.sub(r'(?:\d+(?:,?\d+)?)+(?:\.\d+(?:,?\d+)?)?', lambda x: ''.join(num.NumberToTextThai(float(x.group(0).replace(',', '')))), text)
|
40 |
+
|
41 |
+
def latin_to_thai(text):
|
42 |
+
for regex, replacement in _latin_to_thai:
|
43 |
+
text = re.sub(regex, replacement, text)
|
44 |
+
return text
|
utils.py
CHANGED
@@ -1,229 +1,8 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import sys
|
4 |
-
import argparse
|
5 |
import logging
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
import torch
|
11 |
-
|
12 |
-
MATPLOTLIB_FLAG = False
|
13 |
-
|
14 |
-
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
15 |
-
logger = logging
|
16 |
-
|
17 |
-
|
18 |
-
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
19 |
-
assert os.path.isfile(checkpoint_path)
|
20 |
-
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
21 |
-
iteration = checkpoint_dict['iteration']
|
22 |
-
learning_rate = checkpoint_dict['learning_rate']
|
23 |
-
if optimizer is not None:
|
24 |
-
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
25 |
-
saved_state_dict = checkpoint_dict['model']
|
26 |
-
if hasattr(model, 'module'):
|
27 |
-
state_dict = model.module.state_dict()
|
28 |
-
else:
|
29 |
-
state_dict = model.state_dict()
|
30 |
-
new_state_dict= {}
|
31 |
-
for k, v in state_dict.items():
|
32 |
-
try:
|
33 |
-
new_state_dict[k] = saved_state_dict[k]
|
34 |
-
except:
|
35 |
-
logger.info("%s is not in the checkpoint" % k)
|
36 |
-
new_state_dict[k] = v
|
37 |
-
if hasattr(model, 'module'):
|
38 |
-
model.module.load_state_dict(new_state_dict)
|
39 |
-
else:
|
40 |
-
model.load_state_dict(new_state_dict)
|
41 |
-
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
42 |
-
checkpoint_path, iteration))
|
43 |
-
return model, optimizer, learning_rate, iteration
|
44 |
-
|
45 |
-
|
46 |
-
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
47 |
-
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
48 |
-
iteration, checkpoint_path))
|
49 |
-
if hasattr(model, 'module'):
|
50 |
-
state_dict = model.module.state_dict()
|
51 |
-
else:
|
52 |
-
state_dict = model.state_dict()
|
53 |
-
torch.save({'model': state_dict,
|
54 |
-
'iteration': iteration,
|
55 |
-
'optimizer': optimizer.state_dict(),
|
56 |
-
'learning_rate': learning_rate}, checkpoint_path)
|
57 |
-
|
58 |
-
|
59 |
-
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
60 |
-
for k, v in scalars.items():
|
61 |
-
writer.add_scalar(k, v, global_step)
|
62 |
-
for k, v in histograms.items():
|
63 |
-
writer.add_histogram(k, v, global_step)
|
64 |
-
for k, v in images.items():
|
65 |
-
writer.add_image(k, v, global_step, dataformats='HWC')
|
66 |
-
for k, v in audios.items():
|
67 |
-
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
68 |
-
|
69 |
-
|
70 |
-
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
71 |
-
f_list = glob.glob(os.path.join(dir_path, regex))
|
72 |
-
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
73 |
-
x = f_list[-1]
|
74 |
-
print(x)
|
75 |
-
return x
|
76 |
-
|
77 |
-
|
78 |
-
def plot_spectrogram_to_numpy(spectrogram):
|
79 |
-
global MATPLOTLIB_FLAG
|
80 |
-
if not MATPLOTLIB_FLAG:
|
81 |
-
import matplotlib
|
82 |
-
matplotlib.use("Agg")
|
83 |
-
MATPLOTLIB_FLAG = True
|
84 |
-
mpl_logger = logging.getLogger('matplotlib')
|
85 |
-
mpl_logger.setLevel(logging.WARNING)
|
86 |
-
import matplotlib.pylab as plt
|
87 |
-
import numpy as np
|
88 |
-
|
89 |
-
fig, ax = plt.subplots(figsize=(10,2))
|
90 |
-
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
91 |
-
interpolation='none')
|
92 |
-
plt.colorbar(im, ax=ax)
|
93 |
-
plt.xlabel("Frames")
|
94 |
-
plt.ylabel("Channels")
|
95 |
-
plt.tight_layout()
|
96 |
-
|
97 |
-
fig.canvas.draw()
|
98 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
99 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
100 |
-
plt.close()
|
101 |
-
return data
|
102 |
-
|
103 |
-
|
104 |
-
def plot_alignment_to_numpy(alignment, info=None):
|
105 |
-
global MATPLOTLIB_FLAG
|
106 |
-
if not MATPLOTLIB_FLAG:
|
107 |
-
import matplotlib
|
108 |
-
matplotlib.use("Agg")
|
109 |
-
MATPLOTLIB_FLAG = True
|
110 |
-
mpl_logger = logging.getLogger('matplotlib')
|
111 |
-
mpl_logger.setLevel(logging.WARNING)
|
112 |
-
import matplotlib.pylab as plt
|
113 |
-
import numpy as np
|
114 |
-
|
115 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
116 |
-
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
117 |
-
interpolation='none')
|
118 |
-
fig.colorbar(im, ax=ax)
|
119 |
-
xlabel = 'Decoder timestep'
|
120 |
-
if info is not None:
|
121 |
-
xlabel += '\n\n' + info
|
122 |
-
plt.xlabel(xlabel)
|
123 |
-
plt.ylabel('Encoder timestep')
|
124 |
-
plt.tight_layout()
|
125 |
-
|
126 |
-
fig.canvas.draw()
|
127 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
128 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
129 |
-
plt.close()
|
130 |
-
return data
|
131 |
-
|
132 |
-
|
133 |
-
def load_wav_to_torch(full_path):
|
134 |
-
sampling_rate, data = read(full_path)
|
135 |
-
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
136 |
-
|
137 |
-
|
138 |
-
def load_filepaths_and_text(filename, split="|"):
|
139 |
-
with open(filename, encoding='utf-8') as f:
|
140 |
-
filepaths_and_text = [line.strip().split(split) for line in f]
|
141 |
-
return filepaths_and_text
|
142 |
-
|
143 |
-
|
144 |
-
def get_hparams(init=True):
|
145 |
-
parser = argparse.ArgumentParser()
|
146 |
-
parser.add_argument('-c', '--config', type=str, default="./configs/uma87.json",
|
147 |
-
help='JSON file for configuration')
|
148 |
-
parser.add_argument('-m', '--model', type=str, default="./pretrained_models/uma_0epoch.pth",
|
149 |
-
help='Model name')
|
150 |
-
|
151 |
-
args = parser.parse_args()
|
152 |
-
model_dir = os.path.join("../drive/MyDrive", args.model)
|
153 |
-
|
154 |
-
if not os.path.exists(model_dir):
|
155 |
-
os.makedirs(model_dir)
|
156 |
-
|
157 |
-
config_path = args.config
|
158 |
-
config_save_path = os.path.join(model_dir, "config.json")
|
159 |
-
if init:
|
160 |
-
with open(config_path, "r") as f:
|
161 |
-
data = f.read()
|
162 |
-
with open(config_save_path, "w") as f:
|
163 |
-
f.write(data)
|
164 |
-
else:
|
165 |
-
with open(config_save_path, "r") as f:
|
166 |
-
data = f.read()
|
167 |
-
config = json.loads(data)
|
168 |
-
|
169 |
-
hparams = HParams(**config)
|
170 |
-
hparams.model_dir = model_dir
|
171 |
-
return hparams
|
172 |
-
|
173 |
-
|
174 |
-
def get_hparams_from_dir(model_dir):
|
175 |
-
config_save_path = os.path.join(model_dir, "config.json")
|
176 |
-
with open(config_save_path, "r") as f:
|
177 |
-
data = f.read()
|
178 |
-
config = json.loads(data)
|
179 |
-
|
180 |
-
hparams =HParams(**config)
|
181 |
-
hparams.model_dir = model_dir
|
182 |
-
return hparams
|
183 |
-
|
184 |
-
|
185 |
-
def get_hparams_from_file(config_path):
|
186 |
-
with open(config_path, "r") as f:
|
187 |
-
data = f.read()
|
188 |
-
config = json.loads(data)
|
189 |
-
|
190 |
-
hparams =HParams(**config)
|
191 |
-
return hparams
|
192 |
-
|
193 |
-
|
194 |
-
def check_git_hash(model_dir):
|
195 |
-
source_dir = os.path.dirname(os.path.realpath(__file__))
|
196 |
-
if not os.path.exists(os.path.join(source_dir, ".git")):
|
197 |
-
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
198 |
-
source_dir
|
199 |
-
))
|
200 |
-
return
|
201 |
-
|
202 |
-
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
203 |
-
|
204 |
-
path = os.path.join(model_dir, "githash")
|
205 |
-
if os.path.exists(path):
|
206 |
-
saved_hash = open(path).read()
|
207 |
-
if saved_hash != cur_hash:
|
208 |
-
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
209 |
-
saved_hash[:8], cur_hash[:8]))
|
210 |
-
else:
|
211 |
-
open(path, "w").write(cur_hash)
|
212 |
-
|
213 |
-
|
214 |
-
def get_logger(model_dir, filename="train.log"):
|
215 |
-
global logger
|
216 |
-
logger = logging.getLogger(os.path.basename(model_dir))
|
217 |
-
logger.setLevel(logging.DEBUG)
|
218 |
-
|
219 |
-
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
220 |
-
if not os.path.exists(model_dir):
|
221 |
-
os.makedirs(model_dir)
|
222 |
-
h = logging.FileHandler(os.path.join(model_dir, filename))
|
223 |
-
h.setLevel(logging.DEBUG)
|
224 |
-
h.setFormatter(formatter)
|
225 |
-
logger.addHandler(h)
|
226 |
-
return logger
|
227 |
|
228 |
|
229 |
class HParams():
|
@@ -232,7 +11,7 @@ class HParams():
|
|
232 |
if type(v) == dict:
|
233 |
v = HParams(**v)
|
234 |
self[k] = v
|
235 |
-
|
236 |
def keys(self):
|
237 |
return self.__dict__.keys()
|
238 |
|
@@ -256,3 +35,41 @@ class HParams():
|
|
256 |
|
257 |
def __repr__(self):
|
258 |
return self.__dict__.__repr__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
+
from json import loads
|
3 |
+
from torch import load, FloatTensor
|
4 |
+
from numpy import float32
|
5 |
+
import librosa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
class HParams():
|
|
|
11 |
if type(v) == dict:
|
12 |
v = HParams(**v)
|
13 |
self[k] = v
|
14 |
+
|
15 |
def keys(self):
|
16 |
return self.__dict__.keys()
|
17 |
|
|
|
35 |
|
36 |
def __repr__(self):
|
37 |
return self.__dict__.__repr__()
|
38 |
+
|
39 |
+
|
40 |
+
def load_checkpoint(checkpoint_path, model):
|
41 |
+
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
42 |
+
iteration = checkpoint_dict['iteration']
|
43 |
+
saved_state_dict = checkpoint_dict['model']
|
44 |
+
if hasattr(model, 'module'):
|
45 |
+
state_dict = model.module.state_dict()
|
46 |
+
else:
|
47 |
+
state_dict = model.state_dict()
|
48 |
+
new_state_dict= {}
|
49 |
+
for k, v in state_dict.items():
|
50 |
+
try:
|
51 |
+
new_state_dict[k] = saved_state_dict[k]
|
52 |
+
except:
|
53 |
+
logging.info("%s is not in the checkpoint" % k)
|
54 |
+
new_state_dict[k] = v
|
55 |
+
if hasattr(model, 'module'):
|
56 |
+
model.module.load_state_dict(new_state_dict)
|
57 |
+
else:
|
58 |
+
model.load_state_dict(new_state_dict)
|
59 |
+
logging.info("Loaded checkpoint '{}' (iteration {})" .format(
|
60 |
+
checkpoint_path, iteration))
|
61 |
+
return
|
62 |
+
|
63 |
+
|
64 |
+
def get_hparams_from_file(config_path):
|
65 |
+
with open(config_path, "r") as f:
|
66 |
+
data = f.read()
|
67 |
+
config = loads(data)
|
68 |
+
|
69 |
+
hparams = HParams(**config)
|
70 |
+
return hparams
|
71 |
+
|
72 |
+
|
73 |
+
def load_audio_to_torch(full_path, target_sampling_rate):
|
74 |
+
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
75 |
+
return FloatTensor(audio.astype(float32))
|