Spaces:
Sleeping
Sleeping
import random | |
import numpy as np | |
from tqdm import tqdm | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from einops import repeat | |
import time | |
from tools.torch_tools import wav_to_fbank, sinusoidal_positional_embedding | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from audioldm.utils import default_audioldm_config, get_metadata | |
from transformers import CLIPTokenizer, AutoTokenizer, T5Tokenizer | |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel | |
from transformers import CLIPVisionModelWithProjection, CLIPTextModelWithProjection | |
from transformers import CLIPProcessor, CLIPModel | |
import diffusers | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers import DDPMScheduler, UNet2DConditionModel | |
from diffusers import AutoencoderKL as DiffuserAutoencoderKL | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop | |
from diffusers import AudioLDMPipeline | |
def build_pretrained_models(name): | |
checkpoint = torch.load(name, map_location="cpu") | |
scale_factor = checkpoint["state_dict"]["scale_factor"].item() | |
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k} | |
config = default_audioldm_config(name) | |
vae_config = config["model"]["params"]["first_stage_config"]["params"] | |
vae_config["scale_factor"] = scale_factor | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(vae_state_dict) | |
fn_STFT = TacotronSTFT( | |
config["preprocessing"]["stft"]["filter_length"], | |
config["preprocessing"]["stft"]["hop_length"], | |
config["preprocessing"]["stft"]["win_length"], | |
config["preprocessing"]["mel"]["n_mel_channels"], | |
config["preprocessing"]["audio"]["sampling_rate"], | |
config["preprocessing"]["mel"]["mel_fmin"], | |
config["preprocessing"]["mel"]["mel_fmax"], | |
) | |
vae.eval() | |
fn_STFT.eval() | |
return vae, fn_STFT | |
class EffNetb3(nn.Module): | |
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True): | |
super(EffNetb3, self).__init__() | |
self.model_name = 'effnetb3' | |
self.pretrained = pretrained | |
# Create model | |
# self.effnet = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b3', pretrained=self.pretrained) | |
# torch.save(self.effnet, 'model.pth') | |
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local') | |
#self.effnet.conv_stem = nn.Conv2d(1, 40, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) | |
self.embedder = nn.Conv2d(384, embedding_dim, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
#out = self.effnet(x) | |
out = self.effnet.conv_stem(x) | |
out = self.effnet.bn1(out) | |
out = self.effnet.act1(out) | |
for i in range(len(self.effnet.blocks)): | |
out = self.effnet.blocks[i](out) | |
out = self.embedder(out) | |
return out | |
class EffNetb3_last_layer(nn.Module): | |
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True): | |
super(EffNetb3_last_layer, self).__init__() | |
self.model_name = 'effnetb3' | |
self.pretrained = pretrained | |
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local') | |
self.effnet.classifier = nn.Linear(1536, embedding_dim) | |
def forward(self, x): | |
out = self.effnet(x) | |
return out.unsqueeze(-1) | |
class Clip4Video(nn.Module): | |
def __init__(self, model, embedding_dim=1024, pretrained=True, pe=False): | |
super(Clip4Video, self).__init__() | |
self.pretrained = pretrained | |
self.clip_vision = CLIPVisionModelWithProjection.from_pretrained(model) | |
self.clip_text = CLIPTextModelWithProjection.from_pretrained(model) | |
self.tokenizer = AutoTokenizer.from_pretrained(model) | |
input_dim = 512 if "clip-vit-base" in model else 768 | |
self.linear_layer = nn.Linear(input_dim, embedding_dim) | |
self.pe = sinusoidal_positional_embedding(30, input_dim) if pe else None | |
print("*****PE*****") if pe else print("*****W/O PE*****") | |
def forward(self, text=None, image=None, video=None): | |
assert text is not None or image is not None or video is not None, "At least one of text, image or video should be provided" | |
if text is not None and video is None: | |
inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device) | |
out = self.clip_text(**inputs) | |
out = out.text_embeds.repeat(20, 1) | |
elif video is not None and text is None: | |
out = self.clip_vision(video.to(self.clip_vision.device)) # input video x: t * 3 * w * h | |
out = out.image_embeds # t * 512 | |
if self.pe is not None: | |
out = out + self.pe[:out.shape[0], :].to(self.clip_vision.device) | |
# out['last_hidden_state'].shape # t * 50 * 768 | |
# out['image_embeds'].shape # t * 512 | |
elif text is not None and video is not None: | |
text_inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device) | |
video_out = self.clip_vision(video.to(self.clip_vision.device)) | |
video_out = video_out.image_embeds | |
text_out = self.clip_text(**text_inputs) | |
text_out = text_out.text_embeds.repeat(video_out.shape[0], 1) | |
# out = text_out + video_out | |
# concat | |
out = torch.cat([text_out, video_out], dim=0) | |
out = self.linear_layer(out) # t * 1024 | |
return out | |
class AudioDiffusion(nn.Module): | |
def __init__( | |
self, | |
fea_encoder_name, | |
scheduler_name, | |
unet_model_name=None, | |
unet_model_config_path=None, | |
snr_gamma=None, | |
freeze_text_encoder=True, | |
uncondition=False, | |
img_pretrained_model_path=None, | |
task=None, | |
embedding_dim=1024, | |
pe=False | |
): | |
super().__init__() | |
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" | |
self.fea_encoder_name = fea_encoder_name | |
self.scheduler_name = scheduler_name | |
self.unet_model_name = unet_model_name | |
self.unet_model_config_path = unet_model_config_path | |
self.snr_gamma = snr_gamma | |
self.freeze_text_encoder = freeze_text_encoder | |
self.uncondition = uncondition | |
self.task = task | |
self.pe = pe | |
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview | |
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
if unet_model_config_path: | |
unet_config = UNet2DConditionModel.load_config(unet_model_config_path) | |
print("unet_config", unet_config) | |
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") | |
self.set_from = "random" | |
print("UNet initialized randomly.") | |
else: | |
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") | |
self.set_from = "pre-trained" | |
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) | |
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) | |
print("UNet initialized from stable diffusion checkpoint.") | |
if self.task == "text2audio": | |
if "stable-diffusion" in self.fea_encoder_name: | |
self.tokenizer = CLIPTokenizer.from_pretrained(self.fea_encoder_name, subfolder="tokenizer") | |
self.text_encoder = CLIPTextModel.from_pretrained(self.fea_encoder_name, subfolder="text_encoder") | |
elif "t5" in self.fea_encoder_name and "Chinese" not in self.fea_encoder_name: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) | |
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name) | |
elif "Chinese" in self.fea_encoder_name: | |
self.tokenizer = T5Tokenizer.from_pretrained(self.fea_encoder_name) | |
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name) | |
elif "clap" in self.fea_encoder_name: | |
self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
self.CLAP_model = laion_clap.CLAP_Module(enable_fusion=False) | |
self.CLAP_model.load_ckpt(self.fea_encoder_name) | |
elif "clip-vit" in self.fea_encoder_name: | |
# self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name) | |
# self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name) | |
self.CLIP_model = CLIPTextModelWithProjection.from_pretrained(self.fea_encoder_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) | |
if "base" in self.fea_encoder_name: | |
self.linear_layer = nn.Linear(512, embedding_dim) | |
else: | |
self.linear_layer = nn.Linear(768, embedding_dim) | |
else: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) | |
self.text_encoder = AutoModel.from_pretrained(self.fea_encoder_name) | |
elif self.task == "image2audio": | |
if "clip-vit" in self.fea_encoder_name: | |
self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name) | |
self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name) | |
self.linear_layer = nn.Linear(512, embedding_dim) | |
# self.img_fea_extractor = EffNetb3(img_pretrained_model_path) | |
else: | |
self.img_fea_extractor = EffNetb3_last_layer(img_pretrained_model_path) | |
elif self.task == "video2audio": | |
self.vid_fea_extractor = Clip4Video(model=self.fea_encoder_name, embedding_dim=embedding_dim, pe=pe) | |
def compute_snr(self, timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = self.noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
def encode_text(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
if self.freeze_text_encoder: | |
with torch.no_grad(): | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
else: | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
boolean_encoder_mask = (attention_mask == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_text_CLAP(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer(prompt, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt") | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
if self.freeze_text_encoder: | |
with torch.no_grad(): | |
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt) | |
else: | |
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt) | |
boolean_encoder_mask = (attention_mask == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_image(self, prompt, device): | |
if "clip-vit" in self.fea_encoder_name: | |
with torch.no_grad(): | |
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device) | |
encoder_hidden_states = self.CLIP_model(**inputs).image_embeds | |
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 | |
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) | |
else: | |
img_fea = self.img_fea_extractor(prompt) | |
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) | |
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) | |
boolean_encoder_mask = boolean_encoder_mask.to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_video(self, video_batch, text=None, device=None): | |
vid_feas = [] | |
for i, video in enumerate(video_batch): | |
if text: | |
vid_fea = self.vid_fea_extractor(video=video, text=text[i]) # t * fea_dim | |
else: | |
vid_fea = self.vid_fea_extractor(video=video) | |
vid_feas.append(vid_fea) | |
padding = 0 | |
size = max(v.size(0) for v in vid_feas) | |
batch_size = len(vid_feas) | |
embed_size = vid_feas[0].size(1) | |
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding) | |
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool) | |
def copy_tensor(src, dst): | |
assert dst.numel() == src.numel() | |
dst.copy_(src) | |
for i, v in enumerate(vid_feas): | |
copy_tensor(v, encoder_hidden_states[i][: len(v)]) | |
boolean_encoder_mask[i, len(v):] = False | |
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device) | |
def encode_text_CLIP(self, prompt, device): | |
# tmp_image = np.ones((512, 512, 3)) | |
# with torch.no_grad(): | |
# inputs = self.CLIP_processor(text=prompt, images=tmp_image, return_tensors="pt", padding=True, max_length=77, truncation=True).to(device) | |
# encoder_hidden_states = self.CLIP_model(**inputs).text_embeds # b * 768 | |
text_inputs = self.tokenizer(prompt, padding=True, truncation=True, return_tensors="pt", max_length=77).to(device) | |
encoder_hidden_states = self.CLIP_model(**text_inputs).text_embeds | |
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 | |
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) | |
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) | |
boolean_encoder_mask = boolean_encoder_mask.to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def forward(self, latents, text=None, video=None, image=None, validation_mode=False, device=None): | |
num_train_timesteps = self.noise_scheduler.num_train_timesteps | |
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) | |
# encoder_hidden_states.shape [b, t, f] | |
if self.task == "text2audio": | |
if "clip-vit" in self.fea_encoder_name: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(text, device) | |
else: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text) | |
if self.uncondition: | |
mask_indices = [k for k in range(len(text)) if random.random() < 0.1] | |
# mask_indices = [k for k in range(len(prompt))] | |
if len(mask_indices) > 0: | |
encoder_hidden_states[mask_indices] = 0 | |
elif self.task == "image2audio": | |
encoder_hidden_states, boolean_encoder_mask = self.encode_image(image, device=device) | |
elif self.task == "video2audio": | |
encoder_hidden_states, boolean_encoder_mask = self.encode_video(video, text, device=device) | |
bsz = latents.shape[0] | |
if validation_mode: | |
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) | |
else: | |
# Sample a random timestep for each instance | |
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) | |
timesteps = timesteps.long() | |
noise = torch.randn_like(latents) | |
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the target for loss depending on the prediction type | |
if self.noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif self.noise_scheduler.config.prediction_type == "v_prediction": | |
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") | |
if self.set_from == "random": | |
model_pred = self.unet( | |
noisy_latents, timesteps, encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
elif self.set_from == "pre-trained": | |
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
model_pred = self.unet( | |
compressed_latents, timesteps, encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
if self.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
snr = self.compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
return loss | |
def inference(self, inference_scheduler, text=None, video=None, image=None, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, | |
disable_progress=True, device=None): | |
start = time.time() | |
classifier_free_guidance = guidance_scale > 1.0 | |
#print("ldm time 0", time.time()-start, prompt) | |
if self.task == "text2audio": | |
batch_size = len(text) * num_samples_per_prompt | |
if classifier_free_guidance: | |
if "clip-vit" in self.fea_encoder_name: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text_clip_classifier_free(text, num_samples_per_prompt, device=device) | |
else: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(text, num_samples_per_prompt) | |
else: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text) | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0) | |
elif self.task == "image2audio": | |
if classifier_free_guidance: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_image_classifier_free(image, num_samples_per_prompt, device=device) | |
else: | |
encoder_hidden_states, boolean_encoder_mask = self.encode_image_no_grad(image, device=device) | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0) | |
elif self.task == "video2audio": | |
batch_size = len(video) * num_samples_per_prompt | |
encoder_hidden_states, boolean_encoder_mask = self.encode_video_classifier_free(video, text, num_samples_per_prompt, device=device) | |
# import pdb;pdb.set_trace() | |
#print("ldm time 1", time.time()-start) | |
inference_scheduler.set_timesteps(num_steps, device=device) | |
timesteps = inference_scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, encoder_hidden_states.dtype, device) | |
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
#print("ldm time 2", time.time()-start, timesteps) | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
#print("ldm emu", i, time.time()-start) | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
# perform guidance | |
if classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
progress_bar.update(1) | |
#print("ldm time 3", time.time()-start) | |
if self.set_from == "pre-trained": | |
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
return latents | |
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
shape = (batch_size, num_channels_latents, 256, 16) | |
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * inference_scheduler.init_noise_sigma | |
return latents | |
def encode_text_classifier_free(self, prompt, num_samples_per_prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
with torch.no_grad(): | |
prompt_embeds = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
uncond_tokens = [""] * len(prompt) | |
max_length = prompt_embeds.shape[1] | |
uncond_batch = self.tokenizer( | |
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", | |
) | |
uncond_input_ids = uncond_batch.input_ids.to(device) | |
uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
with torch.no_grad(): | |
negative_prompt_embeds = self.text_encoder( | |
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
)[0] | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
# import pdb;pdb.set_trace() | |
return prompt_embeds, boolean_prompt_mask | |
def encode_image_no_grad(self, prompt, device): | |
with torch.no_grad(): | |
img_fea = self.img_fea_extractor(prompt) | |
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) | |
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) | |
boolean_encoder_mask = boolean_encoder_mask.to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_text_clip_classifier_free(self, prompt, num_samples_per_prompt, device): | |
# 如果想测试输入文本的效果,就用下面两行 | |
with torch.no_grad(): | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(prompt, device) | |
# if "clip-vit" in self.fea_encoder_name: | |
# with torch.no_grad(): | |
# inputs = self.CLIP_processor(text=['aaa'], images=prompt, return_tensors="pt", padding=True).to(device) | |
# encoder_hidden_states = self.CLIP_model(**inputs).image_embeds # b * 768 | |
# encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 | |
# encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) | |
# boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) | |
# boolean_encoder_mask = boolean_encoder_mask.to(device) | |
b, t, n = encoder_hidden_states.shape | |
attention_mask = boolean_encoder_mask.to(device) | |
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) | |
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
return prompt_embeds.to(device), boolean_prompt_mask.to(device) | |
def encode_image_classifier_free(self, prompt, num_samples_per_prompt, device): | |
with torch.no_grad(): | |
if "clip-vit" in self.fea_encoder_name: | |
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device) | |
img_fea = self.CLIP_model(**inputs).image_embeds | |
img_fea = self.linear_layer(img_fea) | |
else: | |
img_fea = self.img_fea_extractor(prompt) | |
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) | |
b, t, n = encoder_hidden_states.shape | |
boolean_encoder_mask = torch.ones((b, t), dtype=torch.bool) | |
attention_mask = boolean_encoder_mask.to(device) | |
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) | |
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
return prompt_embeds.to(device), boolean_prompt_mask.to(device) | |
def encode_video_classifier_free(self, video_batch, text_batch, num_samples_per_prompt, device): | |
vid_feas = [] | |
for i, video in enumerate(video_batch): | |
if text_batch: | |
vid_fea = self.vid_fea_extractor(video=video.to(device), text=text_batch[i]) | |
else: | |
vid_fea = self.vid_fea_extractor(video=video.to(device)) | |
vid_feas.append(vid_fea) | |
padding = 0 | |
size = max(v.size(0) for v in vid_feas) | |
batch_size = len(vid_feas) | |
embed_size = vid_feas[0].size(1) | |
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding) | |
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool) | |
def copy_tensor(src, dst): | |
assert dst.numel() == src.numel() | |
dst.copy_(src) | |
for i, v in enumerate(vid_feas): | |
copy_tensor(v, encoder_hidden_states[i][: len(v)]) | |
boolean_encoder_mask[i, len(v):] = False | |
b, t, n = encoder_hidden_states.shape | |
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) | |
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool) | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
encoder_hidden_states = torch.cat([negative_prompt_embeds, encoder_hidden_states]) | |
boolean_encoder_mask = torch.cat([uncond_attention_mask, boolean_encoder_mask]) | |
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device) |