File size: 10,945 Bytes
c673f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torchaudio
import random
import itertools
import numpy as np
from tools.mix import mix
from PIL import Image
import cv2
from moviepy.editor import VideoFileClip
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop

def normalize_wav(waveform):
    waveform = waveform - torch.mean(waveform)
    waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
    return waveform * 0.5

def sinusoidal_positional_embedding(token_sequence_size, token_embedding_dim, n=10000.0):

    if token_embedding_dim % 2 != 0:
        raise ValueError("Sinusoidal positional embedding cannot apply to odd token embedding dim (got dim={:d})".format(token_embedding_dim))

    T = token_sequence_size
    d = token_embedding_dim #d_model=head_num*d_k, not d_q, d_k, d_v

    positions = torch.arange(0, T).unsqueeze_(1)
    embeddings = torch.zeros(T, d)

    denominators = torch.pow(n, 2*torch.arange(0, d//2)/d) # 10000^(2i/d_model), i is the index of embedding
    embeddings[:, 0::2] = torch.sin(positions/denominators) # sin(pos/10000^(2i/d_model))
    embeddings[:, 1::2] = torch.cos(positions/denominators) # cos(pos/10000^(2i/d_model))

    return embeddings

def pad_wav(waveform, segment_length):
    waveform_length = len(waveform)
    
    if segment_length is None or waveform_length == segment_length:
        return waveform
    elif waveform_length > segment_length:
        return waveform[:segment_length]
    else:
        pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
        waveform = torch.cat([waveform, pad_wav])
        return waveform
    
    
def _pad_spec(fbank, target_length=1000):
    batch, n_frames, channels = fbank.shape
    p = target_length - n_frames
    if p > 0:
        pad = torch.zeros(batch, p, channels).to(fbank.device)
        fbank = torch.cat([fbank, pad], 1)
    elif p < 0:
        fbank = fbank[:, :target_length, :]

    if channels % 2 != 0:
        fbank = fbank[:, :, :-1]

    return fbank


def read_wav_file(filename, segment_length, tgt_sr=48000):
    waveform, sr = torchaudio.load(filename)  # Faster!!!
    if sr != tgt_sr:
        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0]
    else:
        waveform = waveform.squeeze()
    try:
        waveform = normalize_wav(waveform)
    except:
        print ("Exception normalizing:", filename)
        waveform = torch.ones(tgt_sr * 10)
    waveform = pad_wav(waveform, segment_length).unsqueeze(0)
    waveform = waveform / torch.max(torch.abs(waveform))
    waveform = 0.5 * waveform
    return waveform


def get_mel_from_wav(audio, _stft):
    audio1 = torch.nan_to_num(torch.clip(audio, -1, 1))
    audio2 = torch.autograd.Variable(audio1, requires_grad=False)
    melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio2)
    return melspec, log_magnitudes_stft, energy

def wav_to_fbank(paths, target_length=1000, sample_rate=16000, fn_STFT=None):
    assert fn_STFT is not None
    if sample_rate == 16000:
        hop_size = 160
    elif sample_rate == 24000:
        hop_size = 240
    elif sample_rate == 32000:
        hop_size = 320
    elif sample_rate == 48000:
        hop_size = 480
    else:
        raise ValueError(f"sample_rate wrong.") 

    #print("target_length", target_length, hop_size)
    #print("target_length", target_length, sample_rate, fn_STFT)
    #for name, param in fn_STFT.named_parameters():
    #    print(name, param.data)
    waveform = torch.cat([read_wav_file(path, target_length * hop_size, tgt_sr=sample_rate) for path in paths], 0)  # hop size is 160
    #print("waveform", waveform.size())

    #np.set_printoptions(threshold=np.inf)
    #print("waveform", waveform)
    #f_out = open(paths[0].split("/")[-1]+".scp",'w')
    fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
    #print("fbank", fbank)
    fbank = fbank.transpose(1, 2)
    log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)

    fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
        log_magnitudes_stft, target_length
    )

    #f_out.write(paths[0]+ "\n" + str(waveform.cpu().numpy())+"\n")
    #f_out.write("audio1"+ "\n" + str(audio1.cpu().numpy())+"\n")
    #f_out.write("audio2"+ "\n" + str(audio2.cpu().numpy())+"\n")
    #f_out.write("fbank" + "\n" + str(fbank.cpu().numpy())+"\n")
    #print(fbank2)
    return fbank, log_magnitudes_stft, waveform

def get_wav_from_video(video_path, segment_length, tgt_sr=48000):
    video = VideoFileClip(video_path)
    audio = video.audio
    sr = audio.fps
    audio_data = audio.to_soundarray() # 441882 * 2 εŒι€šι“
    waveform = torch.mean(torch.tensor(audio_data, dtype=torch.float), dim=1).unsqueeze(0)  # ε˜ζˆε•ι€šι“
    if sr != tgt_sr:
        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0]
    else:
        waveform = waveform.squeeze()
    try:
        waveform = normalize_wav(waveform)
    except:
        print ("Exception normalizing:", video_path)
        waveform = torch.ones(tgt_sr * 10)
    waveform = pad_wav(waveform, segment_length).unsqueeze(0)
    waveform = waveform / torch.max(torch.abs(waveform))
    waveform = 0.5 * waveform
    return waveform

def get_wavs_from_videos(video_paths, segment_length, tgt_sr=48000):
    wavs = []
    for video_path in video_paths:
        waveform = get_wav_from_video(video_path, segment_length, tgt_sr)
        wavs.append(waveform)
    wavs = torch.cat(wavs, 0)
    return wavs

def wav_in_video_to_fbank(input, target_length=1000, sample_rate=16000, fn_STFT=None, waveform=False):
    assert fn_STFT is not None
    if sample_rate == 16000:
        hop_size = 160
    elif sample_rate == 24000:
        hop_size = 240
    elif sample_rate == 32000:
        hop_size = 320
    elif sample_rate == 48000:
        hop_size = 480
    else:
        raise ValueError(f"sample_rate wrong.") 

    if not waveform:
        paths = input
        waveform = get_wavs_from_videos(paths, target_length * hop_size, tgt_sr=sample_rate) # hop size is 160
    else:
        waveform = input
    fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
    fbank = fbank.transpose(1, 2)
    log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)

    fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
        log_magnitudes_stft, target_length
    )
    return fbank, log_magnitudes_stft, waveform


def uncapitalize(s):
    if s:
        return s[:1].lower() + s[1:]
    else:
        return ""

    
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1000, sample_rate=16000):

    if sample_rate == 16000:
        hop_size = 160
    elif sample_rate == 24000:
        hop_size = 240
    elif sample_rate == 32000:
        hop_size = 320
    elif sample_rate == 48000:
        hop_size = 480
    else:
        raise ValueError(f"sample_rate wrong.")

    sound1 = read_wav_file(path1, target_length * hop_size)[0].numpy()
    #print("sound1", target_length, sound1.size)
    sound2 = read_wav_file(path2, target_length * hop_size)[0].numpy()
    mixed_sound = mix(sound1, sound2, 0.5, sample_rate).reshape(1, -1)
    #print("mixed_sound", mixed_sound.size)
    mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
    return mixed_sound, mixed_caption


def augment(paths, texts, num_items=4, target_length=1000, sample_rate=16000):
    mixed_sounds, mixed_captions = [], []
    combinations = list(itertools.combinations(list(range(len(texts))), 2))
    random.shuffle(combinations)
    if len(combinations) < num_items:
        selected_combinations = combinations
    else:
        selected_combinations = combinations[:num_items]
        
    for (i, j) in selected_combinations:
        new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length, sample_rate)
        mixed_sounds.append(new_sound)
        mixed_captions.append(new_caption)
        
    waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
    waveform = waveform / torch.max(torch.abs(waveform))
    waveform = 0.5 * waveform
    
    return waveform, mixed_captions


def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1000, sample_rate=16000, fn_STFT=None):
    assert fn_STFT is not None
    
    waveform, captions = augment(paths, texts, target_length = target_length, sample_rate=sample_rate)
    fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
    fbank = fbank.transpose(1, 2)
    log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)

    fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
        log_magnitudes_stft, target_length
    )

    return fbank, log_magnitudes_stft, waveform, captions


def load_image(impaths, crop_size=384):
    imgs = []
    RGB_mean = [0.485, 0.456, 0.406]
    RGB_std = [0.229, 0.224, 0.225]
    image_resize_and_crop = Compose([RandomResizedCrop(crop_size), ToTensor()])
    image_normalize = Normalize(mean=RGB_mean, std=RGB_std)
    for impath in impaths:
        img = Image.open(impath).convert('RGB')
        img = image_resize_and_crop(img)
        img = image_normalize(img)
        imgs.append(img)
    imgs = torch.stack(imgs)

    return imgs

def load_video(video_path, frame_rate=1.0, size=224):
    def preprocess(size, n_px):
        return Compose([
            Resize(size, interpolation=InterpolationMode.BICUBIC),            
            CenterCrop(size),
            lambda image: image.convert("RGB"),
            ToTensor(),
            # Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])(n_px)
    videos = []
    # for video_path in video_paths:
    # cap = cv2.VideoCapture(video_path)
    cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)
    frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    if fps < 1:
        images = np.zeros([3, size, size], dtype=np.float32) 
        print("ERROR: problem reading video file: ", video_path)
    else:
        total_duration = (frameCount + fps - 1) // fps
        start_sec, end_sec = 0, total_duration
        interval = fps / frame_rate
        frames_idx = np.floor(np.arange(start_sec*fps, end_sec*fps, interval))
        ret = True     
        images = np.zeros([len(frames_idx), 3, size, size], dtype=np.float32)
            
        for i, idx in enumerate(frames_idx):
            cap.set(cv2.CAP_PROP_POS_FRAMES , idx)
            ret, frame = cap.read()    
            if not ret: break
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)             
            last_frame = i
            images[i,:,:,:] = preprocess(size, Image.fromarray(frame).convert("RGB"))
            
        images = images[:last_frame+1]
        cap.release()
    return torch.tensor(images)