File size: 10,003 Bytes
63f899c
 
 
 
446a654
 
 
 
59d9186
63f899c
 
59d9186
63f899c
0f1045d
bd786ec
c39b894
 
63f899c
446a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6075c0
 
 
59d9186
 
63f899c
59d9186
751c5b7
 
59d9186
23a0ba6
 
 
 
59d9186
63f899c
 
 
59d9186
63f899c
446a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f899c
a6075c0
446a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6075c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa1646
 
 
 
a6075c0
bd786ec
a6075c0
446a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6075c0
446a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
import shutil
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
os.chdir(os.path.dirname(os.path.abspath(__file__)))
from scripts.inference import inference_process
import argparse
import uuid

is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False

if(not is_shared_ui):
    hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")

def is_mp3(file_path):
    try:
        audio = MP3(file_path)
        return True
    except Exception as e:
        return False

def convert_mp3_to_wav(mp3_file_path, wav_file_path):
    # Load the MP3 file
    audio = AudioSegment.from_mp3(mp3_file_path)
    # Export as WAV file
    audio.export(wav_file_path, format="wav")
    return wav_file_path

    
def trim_audio(file_path, output_path, max_duration=4000):
    # Load the audio file
    audio = AudioSegment.from_wav(file_path)
    
    # Check the length of the audio in milliseconds
    audio_length = len(audio)
    
    # If the audio is longer than the maximum duration, trim it
    if audio_length > max_duration:
        trimmed_audio = audio[:max_duration]
    else:
        trimmed_audio = audio
    
    # Export the trimmed audio to a new file
    trimmed_audio.export(output_path, format="wav")

    return output_path


def add_silence_to_wav(wav_file_path, duration_s=1):
    # Load the WAV file
    audio = AudioSegment.from_wav(wav_file_path)
    # Create 1 second of silence
    silence = AudioSegment.silent(duration=duration_s * 1000)  # duration is in milliseconds
    # Add silence to the end of the audio file
    audio_with_silence = audio + silence
    # Export the modified audio
    audio_with_silence.export(wav_file_path, format="wav")
    return wav_file_path

def check_mp3(file_path):
    
    if is_mp3(file_path):
        wav_file_path = os.path.splitext(file_path)[0] + '.wav'
        converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
        print(f"File converted to {wav_file_path}")
        
        return converted_audio
    else:
        print("The file is not an MP3 file.")
        
        return file_path

def convert_webp_to_png(webp_file):

    # Open the WebP image
    webp_image = Image.open(webp_file)

    # Convert and save as PNG
    webp_image.save("png_converted_image.png", "PNG")

    return "png_converted_image.png"

def generate_portrait(prompt_image):
    if prompt_image is None or prompt_image == "":
        raise gr.Error("Can't generate a portrait without a prompt !")
    client = Client("AP123/SDXL-Lightning")
    result = client.predict(
            prompt_image,
            "4-Step",
            api_name="/generate_image"
    )
    print(result)

    return result

def generate_voice(prompt_audio, voice_description):
    if prompt_audio is None or prompt_audio == "" :
        raise gr.Error("Can't generate a voice without text to synthetize !")
    if voice_description is None or voice_description == "":
        gr.Info(
            "For better control, You may want to provide a voice character description next time.",
            duration = 10,
            visible = True
        )
    client = Client("parler-tts/parler_tts_mini")
    result = client.predict(
        text=prompt_audio,
        description=voice_description,
        api_name="/gen_tts"
    )
    print(result)
    return result

def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
    client = Client("collabora/WhisperSpeech")
    result = client.predict(
        multilingual_text=prompt_audio_whisperspeech,
        speaker_audio=handle_file(audio_to_clone),
        speaker_url="",
        cps=14,
        api_name="/whisper_speech_demo"
    )
    print(result) 
    return result

def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
    if is_shared_ui:
        raise gr.Error("This Space only works in duplicated instances")
        
    unique_id = uuid.uuid4()
    
    args = argparse.Namespace(
        config='configs/inference/default.yaml',
        source_image=source_image,
        driving_audio=driving_audio,
        output=f'output-{unique_id}.mp4',
        pose_weight=1.0,
        face_weight=1.0,
        lip_weight=1.0,
        face_expand_ratio=1.2,
        checkpoint=None
    )
    
    inference_process(args)
    return f'output-{unique_id}.mp4' 

def generate_talking_portrait(portrait, voice):

    if portrait is None: 
        raise gr.Error("Please provide a portrait to animate.")
    if voice is None:
        raise gr.Error("Please provide audio (4 seconds max).")
    
    # trim audio 
    input_file = voice
    trimmed_output_file = "trimmed_audio.wav"
    trimmed_output_file = trim_audio(input_file, trimmed_output_file)
    voice = trimmed_output_file

    ready_audio = add_silence_to_wav(voice)
    print(f"1 second of silence added to {voice}")

    # call hallo 
    talking_portrait_vid = run_hallo(portrait, ready_audio)
    return talking_portrait_vid


css = '''
#col-container {
    margin: 0 auto;
}
#main-group {
    background-color: none;
}
.tabs {
    background-color: unset;
}
#image-block {
    flex: 1;
}
#video-block {
    flex: 9;
}
#audio-block, #audio-clone-elm {
    flex: 1;
}
#text-synth, #voice-desc, #text-synth-wsp{
    height: 180px;
}
#audio-column, #result-column {
    display: flex;
}
#gen-voice-btn {
    flex: 1;
}
#parler-tab, #whisperspeech-tab {
    padding: 0;
}
#main-submit{
    flex: 1;
}
div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
.dark #warning-duplicate {
    background-color: #0c0c0c !important;
    border: 1px solid white !important;
}
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Parler X Hallo
        Generate talking portraits
        """)
        with gr.Group(elem_id="main-group"):
            with gr.Row():
                with gr.Column():
                    portrait = gr.Image(
                        sources=["upload"], 
                        type="filepath",
                        format="png",
                        elem_id="image-block"
                    )

                    prompt_image = gr.Textbox(
                        label="Generate image",
                        lines=3
                    )

                    gen_image_btn = gr.Button("Generate portrait (optional)")

                with gr.Column(elem_id="audio-column"):
                    voice = gr.Audio(
                        type="filepath",
                        max_length=4000,
                        elem_id="audio-block"
                    )

                    with gr.Tab("Parler TTS", elem_id="parler-tab"):

                        prompt_audio = gr.Textbox(
                            label="Text to synthetize",
                            lines=4,
                            max_lines=4,
                            elem_id="text-synth"
                        )

                        voice_description = gr.Textbox(
                            label="Voice description",
                            lines=4,
                            max_lines=4,
                            elem_id="voice-desc"
                        )

                        gen_voice_btn = gr.Button("Generate voice (optional)")
                    
                    with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
                        prompt_audio_whisperspeech = gr.Textbox(
                            label="Text to synthetize",
                            lines=4,
                            max_lines=4,
                            elem_id="text-synth-wsp"
                        )
                        audio_to_clone = gr.Audio(
                            label="Voice to clone",
                            type="filepath",
                            elem_id="audio-clone-elm"
                        )
                        gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
                
                with gr.Column(elem_id="result-column"): 
                    result = gr.Video(
                        elem_id="video-block"
                    )
                    
                    submit_btn = gr.Button("Submit", elem_id="main-submit")

    voice.upload(
        fn = check_mp3,
        inputs = [voice],
        outputs = [voice],
        queue = False,
        show_api = False
    )

    gen_image_btn.click(
        fn = generate_portrait,
        inputs = [prompt_image],
        outputs = [portrait],
        queue=False,
        show_api = False
    )

    gen_voice_btn.click(
        fn = generate_voice,
        inputs = [prompt_audio, voice_description],
        outputs = [voice],
        queue=False,
        show_api = False
    )

    gen_wsp_voice_btn.click(
        fn = get_whisperspeech,
        inputs = [prompt_audio_whisperspeech, audio_to_clone],
        outputs = [voice],
        queue=False,
        show_api = False
    )

    submit_btn.click(
        fn = generate_talking_portrait,
        inputs = [portrait, voice],
        outputs = [result],
        show_api = False
    )
        

demo.queue(max_size=2).launch(show_error=True, show_api=False)