File size: 5,607 Bytes
cd4d90a
 
 
 
 
 
d46329a
cd4d90a
 
 
 
 
d46329a
 
2233e64
 
 
cd4d90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d46329a
 
 
cd4d90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576408
 
 
 
 
 
 
cd4d90a
7576408
 
 
 
 
4375c79
 
7576408
cd4d90a
 
d46329a
7576408
9a2f042
 
 
cd4d90a
 
 
 
 
 
 
 
 
 
 
 
 
2233e64
7576408
9a2f042
7576408
 
cd4d90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576408
 
 
 
 
cd4d90a
 
 
 
 
 
 
 
 
 
 
 
4375c79
cd4d90a
 
 
 
7576408
cd4d90a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import colorsys
import os

import gradio as gr
import matplotlib.colors as mcolors
import numpy as np
import spaces
import torch
from gradio.themes.utils import sizes
from PIL import Image
from torchvision import transforms

# ----------------- ENV ----------------- #

if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")

LABELS_TO_IDS = {
    "Background": 0,
    "Apparel": 1,
    "Face Neck": 2,
    "Hair": 3,
    "Left Foot": 4,
    "Left Hand": 5,
    "Left Lower Arm": 6,
    "Left Lower Leg": 7,
    "Left Shoe": 8,
    "Left Sock": 9,
    "Left Upper Arm": 10,
    "Left Upper Leg": 11,
    "Lower Clothing": 12,
    "Right Foot": 13,
    "Right Hand": 14,
    "Right Lower Arm": 15,
    "Right Lower Leg": 16,
    "Right Shoe": 17,
    "Right Sock": 18,
    "Right Upper Arm": 19,
    "Right Upper Leg": 20,
    "Torso": 21,
    "Upper Clothing": 22,
    "Lower Lip": 23,
    "Upper Lip": 24,
    "Lower Teeth": 25,
    "Upper Teeth": 26,
    "Tongue": 27,
}


# ----------------- HELPER FUNCTIONS ----------------- #


def get_palette(num_cls):
    palette = [0] * (256 * 3)
    palette[0:3] = [0, 0, 0]

    for j in range(1, num_cls):
        hue = (j - 1) / (num_cls - 1)
        saturation = 1.0
        value = 1.0 if j % 2 == 0 else 0.5
        rgb = colorsys.hsv_to_rgb(hue, saturation, value)
        r, g, b = [int(x * 255) for x in rgb]
        palette[j * 3 : j * 3 + 3] = [r, g, b]

    return palette


def create_colormap(palette):
    colormap = np.array(palette).reshape(-1, 3) / 255.0
    return mcolors.ListedColormap(colormap)


def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5):
    img_np = np.array(img.convert("RGB"))
    mask_np = np.array(mask)

    num_cls = len(labels_to_ids)
    palette = get_palette(num_cls)
    colormap = create_colormap(palette)

    overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8)
    for label, idx in labels_to_ids.items():
        if idx != 0:
            overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255

    blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha))

    return blended


# ----------------- MODEL ----------------- #

CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
CHECKPOINTS = {
    "0.3B": "sapiens_0.3b_goliath_best_goliath_mIoU_7673_epoch_194_torchscript.pt2",
    "0.6B": "sapiens_0.6b_goliath_best_goliath_mIoU_7777_epoch_178_torchscript.pt2",
    "1B": "sapiens_1b_goliath_best_goliath_mIoU_7994_epoch_151_torchscript.pt2",
    "2B": "sapiens_2b_goliath_best_goliath_mIoU_8179_epoch_181_torchscript.pt2",
}


def load_model(checkpoint_name: str):
    checkpoint_path = os.path.join(CHECKPOINTS_DIR, CHECKPOINTS[checkpoint_name])
    model = torch.jit.load(checkpoint_path)
    model.eval()
    model.to("cuda")


MODELS = {name: load_model(name) for name in CHECKPOINTS.keys()}


@torch.inference_mode()
def run_model(model, input_tensor, height, width):
    output = model(input_tensor)
    output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
    _, preds = torch.max(output, 1)
    return preds


transform_fn = transforms.Compose(
    [
        transforms.Resize((1024, 768)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)
# ----------------- CORE FUNCTION ----------------- #


@spaces.GPU
def segment(image: Image.Image, model_name: str) -> Image.Image:
    input_tensor = transform_fn(image).unsqueeze(0).to("cuda")
    model = MODELS[model_name]
    preds = run_model(model, input_tensor, height=image.height, width=image.width)
    mask = preds.squeeze(0).cpu().numpy()
    mask_image = Image.fromarray(mask.astype("uint8"))
    blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
    return blended_image


# ----------------- GRADIO UI ----------------- #


with open("banner.html", "r") as file:
    banner = file.read()
with open("tips.html", "r") as file:
    tips = file.read()

CUSTOM_CSS = """
.image-container  img {
    max-width: 512px;
    max-height: 512px;
    margin: 0 auto;
    border-radius: 0px;
.gradio-container {background-color: #fafafa}
"""

with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
    gr.HTML(banner)
    gr.HTML(tips)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil", format="png")
            model_name = gr.Dropdown(
                label="Model Version",
                choices=list(CHECKPOINTS.keys()),
                value="0.3B",
            )

            example_model = gr.Examples(
                inputs=input_image,
                examples_per_page=10,
                examples=[
                    os.path.join(ASSETS_DIR, "examples", img)
                    for img in os.listdir(os.path.join(ASSETS_DIR, "examples"))
                ],
            )
        with gr.Column():
            result_image = gr.Image(label="Segmentation Result", format="png")
            run_button = gr.Button("Run")

            gr.Image(os.path.join(ASSETS_DIR, "legend.png"), label="Legend", type="filepath")

    run_button.click(
        fn=segment,
        inputs=[input_image, model_name],
        outputs=[result_image],
    )


if __name__ == "__main__":
    demo.launch(share=False)