Vincentqyw
fix: cpu running
74659e4
raw
history blame
4.88 kB
import sys
from pathlib import Path
import subprocess
import logging
import torch
from PIL import Image
from collections import OrderedDict, namedtuple
from ..utils.base_model import BaseModel
from ..utils import do_system
sgmnet_path = Path(__file__).parent / "../../third_party/SGMNet"
sys.path.append(str(sgmnet_path))
from sgmnet import matcher as SGM_Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger = logging.getLogger(__name__)
class SGMNet(BaseModel):
default_conf = {
"name": "SGM",
"model_name": "model_best.pth",
"seed_top_k": [256, 256],
"seed_radius_coe": 0.01,
"net_channels": 128,
"layer_num": 9,
"head": 4,
"seedlayer": [0, 6],
"use_mc_seeding": True,
"use_score_encoding": False,
"conf_bar": [1.11, 0.1],
"sink_iter": [10, 100],
"detach_iter": 1000000,
"match_threshold": 0.2,
}
required_inputs = [
"image0",
"image1",
]
weight_urls = {
"model_best.pth": "https://drive.google.com/uc?id=1Ca0WmKSSt2G6P7m8YAOlSAHEFar_TAWb&confirm=t",
}
proxy = "http://localhost:1080"
# Initialize the line matcher
def _init(self, conf):
sgmnet_weights = sgmnet_path / "weights/sgm/root" / conf["model_name"]
link = self.weight_urls[conf["model_name"]]
tar_path = sgmnet_path / "weights.tar.gz"
# Download the model.
if not sgmnet_weights.exists():
if not tar_path.exists():
cmd = ["gdown", link, "-O", str(tar_path), "--proxy", self.proxy]
cmd_wo_proxy = ["gdown", link, "-O", str(tar_path)]
logger.info(f"Downloading the SGMNet model with `{cmd_wo_proxy}`.")
try:
subprocess.run(cmd_wo_proxy, check=True)
except subprocess.CalledProcessError as e:
logger.info(f"Downloading the SGMNet model with `{cmd}`.")
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
logger.error(f"Failed to download the SGMNet model.")
raise e
cmd = [f"cd {str(sgmnet_path)} & tar -xvf", str(tar_path)]
logger.info(f"Unzip model file `{cmd}`.")
do_system(f"cd {str(sgmnet_path)} & tar -xvf {str(tar_path)}")
# config
config = namedtuple("config", conf.keys())(*conf.values())
self.net = SGM_Model(config)
checkpoint = torch.load(sgmnet_weights, map_location="cpu")
# for ddp model
if list(checkpoint["state_dict"].items())[0][0].split(".")[0] == "module":
new_stat_dict = OrderedDict()
for key, value in checkpoint["state_dict"].items():
new_stat_dict[key[7:]] = value
checkpoint["state_dict"] = new_stat_dict
self.net.load_state_dict(checkpoint["state_dict"])
logger.info(f"Load SGMNet model done.")
def _forward(self, data):
x1 = data["keypoints0"] # N x 2
x2 = data["keypoints1"]
score1 = data["scores0"].reshape(-1, 1) # N x 1
score2 = data["scores1"].reshape(-1, 1)
desc1 = data["descriptors0"].permute(0, 2, 1) # 1 x N x 128
desc2 = data["descriptors1"].permute(0, 2, 1)
size1 = torch.tensor(data["image0"].shape[2:]).flip(0) # W x H -> x & y
size2 = torch.tensor(data["image1"].shape[2:]).flip(0) # W x H
norm_x1 = self.normalize_size(x1, size1)
norm_x2 = self.normalize_size(x2, size2)
x1 = torch.cat((norm_x1, score1), dim=-1) # N x 3
x2 = torch.cat((norm_x2, score2), dim=-1)
input = {"x1": x1[None], "x2": x2[None], "desc1": desc1, "desc2": desc2}
input = {
k: v.to(device).float() if isinstance(v, torch.Tensor) else v
for k, v in input.items()
}
pred = self.net(input, test_mode=True)
p = pred["p"] # shape: N * M
indices0 = self.match_p(p[0, :-1, :-1])
pred = {
"matches0": indices0.unsqueeze(0),
"matching_scores0": torch.zeros(indices0.size(0)).unsqueeze(0),
}
return pred
def match_p(self, p):
score, index = torch.topk(p, k=1, dim=-1)
_, index2 = torch.topk(p, k=1, dim=-2)
mask_th, index, index2 = (
score[:, 0] > self.conf["match_threshold"],
index[:, 0],
index2.squeeze(0),
)
mask_mc = index2[index] == torch.arange(len(p)).to(device)
mask = mask_th & mask_mc
indices0 = torch.where(mask, index, index.new_tensor(-1))
return indices0
def normalize_size(self, x, size, scale=1):
norm_fac = size.max()
return (x - size / 2 + 0.5) / (norm_fac * scale)