|
import os |
|
|
|
import torch |
|
import numpy as np |
|
from tqdm import tqdm |
|
from audioldm.utils import default, instantiate_from_config, save_wave |
|
from audioldm.latent_diffusion.ddpm import DDPM |
|
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution |
|
from audioldm.latent_diffusion.util import noise_like |
|
from audioldm.latent_diffusion.ddim import DDIMSampler |
|
import os |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class LatentDiffusion(DDPM): |
|
"""main class""" |
|
|
|
def __init__( |
|
self, |
|
device="cuda", |
|
first_stage_config=None, |
|
cond_stage_config=None, |
|
num_timesteps_cond=None, |
|
cond_stage_key="image", |
|
cond_stage_trainable=False, |
|
concat_mode=True, |
|
cond_stage_forward=None, |
|
conditioning_key=None, |
|
scale_factor=1.0, |
|
scale_by_std=False, |
|
base_learning_rate=None, |
|
*args, |
|
**kwargs, |
|
): |
|
self.device = device |
|
self.learning_rate = base_learning_rate |
|
self.num_timesteps_cond = default(num_timesteps_cond, 1) |
|
self.scale_by_std = scale_by_std |
|
assert self.num_timesteps_cond <= kwargs["timesteps"] |
|
|
|
if conditioning_key is None: |
|
conditioning_key = "concat" if concat_mode else "crossattn" |
|
if cond_stage_config == "__is_unconditional__": |
|
conditioning_key = None |
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
ignore_keys = kwargs.pop("ignore_keys", []) |
|
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) |
|
self.concat_mode = concat_mode |
|
self.cond_stage_trainable = cond_stage_trainable |
|
self.cond_stage_key = cond_stage_key |
|
self.cond_stage_key_orig = cond_stage_key |
|
try: |
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 |
|
except: |
|
self.num_downs = 0 |
|
if not scale_by_std: |
|
self.scale_factor = scale_factor |
|
else: |
|
self.register_buffer("scale_factor", torch.tensor(scale_factor)) |
|
self.instantiate_first_stage(first_stage_config) |
|
self.instantiate_cond_stage(cond_stage_config) |
|
self.cond_stage_forward = cond_stage_forward |
|
self.clip_denoised = False |
|
|
|
def make_cond_schedule( |
|
self, |
|
): |
|
self.cond_ids = torch.full( |
|
size=(self.num_timesteps,), |
|
fill_value=self.num_timesteps - 1, |
|
dtype=torch.long, |
|
) |
|
ids = torch.round( |
|
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) |
|
).long() |
|
self.cond_ids[: self.num_timesteps_cond] = ids |
|
|
|
def register_schedule( |
|
self, |
|
given_betas=None, |
|
beta_schedule="linear", |
|
timesteps=1000, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
): |
|
super().register_schedule( |
|
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s |
|
) |
|
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1 |
|
if self.shorten_cond_schedule: |
|
self.make_cond_schedule() |
|
|
|
def instantiate_first_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.first_stage_model = model.eval() |
|
self.first_stage_model.train = disabled_train |
|
for param in self.first_stage_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def instantiate_cond_stage(self, config): |
|
if not self.cond_stage_trainable: |
|
if config == "__is_first_stage__": |
|
print("Using first stage also as cond stage.") |
|
self.cond_stage_model = self.first_stage_model |
|
elif config == "__is_unconditional__": |
|
print(f"Training {self.__class__.__name__} as an unconditional model.") |
|
self.cond_stage_model = None |
|
|
|
else: |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model.eval() |
|
self.cond_stage_model.train = disabled_train |
|
for param in self.cond_stage_model.parameters(): |
|
param.requires_grad = False |
|
else: |
|
assert config != "__is_first_stage__" |
|
assert config != "__is_unconditional__" |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model |
|
self.cond_stage_model = self.cond_stage_model.to(self.device) |
|
|
|
def get_first_stage_encoding(self, encoder_posterior): |
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
z = encoder_posterior.sample() |
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
z = encoder_posterior |
|
else: |
|
raise NotImplementedError( |
|
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" |
|
) |
|
return self.scale_factor * z |
|
|
|
def get_learned_conditioning(self, c): |
|
if self.cond_stage_forward is None: |
|
if hasattr(self.cond_stage_model, "encode") and callable( |
|
self.cond_stage_model.encode |
|
): |
|
c = self.cond_stage_model.encode(c) |
|
if isinstance(c, DiagonalGaussianDistribution): |
|
c = c.mode() |
|
else: |
|
|
|
if type(c) == list and len(c) == 1: |
|
c = self.cond_stage_model([c[0], c[0]]) |
|
c = c[0:1] |
|
else: |
|
c = self.cond_stage_model(c) |
|
else: |
|
assert hasattr(self.cond_stage_model, self.cond_stage_forward) |
|
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) |
|
return c |
|
|
|
@torch.no_grad() |
|
def get_input( |
|
self, |
|
batch, |
|
k, |
|
return_first_stage_encode=True, |
|
return_first_stage_outputs=False, |
|
force_c_encode=False, |
|
cond_key=None, |
|
return_original_cond=False, |
|
bs=None, |
|
): |
|
x = super().get_input(batch, k) |
|
|
|
if bs is not None: |
|
x = x[:bs] |
|
|
|
x = x.to(self.device) |
|
|
|
if return_first_stage_encode: |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
else: |
|
z = None |
|
|
|
if self.model.conditioning_key is not None: |
|
if cond_key is None: |
|
cond_key = self.cond_stage_key |
|
if cond_key != self.first_stage_key: |
|
if cond_key in ["caption", "coordinates_bbox"]: |
|
xc = batch[cond_key] |
|
elif cond_key == "class_label": |
|
xc = batch |
|
else: |
|
|
|
xc = super().get_input(batch, cond_key) |
|
if type(xc) == torch.Tensor: |
|
xc = xc.to(self.device) |
|
else: |
|
xc = x |
|
if not self.cond_stage_trainable or force_c_encode: |
|
if isinstance(xc, dict) or isinstance(xc, list): |
|
c = self.get_learned_conditioning(xc) |
|
else: |
|
c = self.get_learned_conditioning(xc.to(self.device)) |
|
else: |
|
c = xc |
|
|
|
if bs is not None: |
|
c = c[:bs] |
|
|
|
else: |
|
c = None |
|
xc = None |
|
if self.use_positional_encodings: |
|
pos_x, pos_y = self.compute_latent_shifts(batch) |
|
c = {"pos_x": pos_x, "pos_y": pos_y} |
|
out = [z, c] |
|
if return_first_stage_outputs: |
|
xrec = self.decode_first_stage(z) |
|
out.extend([x, xrec]) |
|
if return_original_cond: |
|
out.append(xc) |
|
return out |
|
|
|
@torch.no_grad() |
|
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): |
|
if predict_cids: |
|
if z.dim() == 4: |
|
z = torch.argmax(z.exp(), dim=1).long() |
|
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) |
|
z = rearrange(z, "b h w c -> b c h w").contiguous() |
|
|
|
z = 1.0 / self.scale_factor * z |
|
return self.first_stage_model.decode(z) |
|
|
|
def mel_spectrogram_to_waveform(self, mel): |
|
|
|
if len(mel.size()) == 4: |
|
mel = mel.squeeze(1) |
|
mel = mel.permute(0, 2, 1) |
|
waveform = self.first_stage_model.vocoder(mel) |
|
waveform = waveform.cpu().detach().numpy() |
|
return waveform |
|
|
|
@torch.no_grad() |
|
def encode_first_stage(self, x): |
|
return self.first_stage_model.encode(x) |
|
|
|
def apply_model(self, x_noisy, t, cond, return_ids=False): |
|
|
|
if isinstance(cond, dict): |
|
|
|
pass |
|
else: |
|
if not isinstance(cond, list): |
|
cond = [cond] |
|
if self.model.conditioning_key == "concat": |
|
key = "c_concat" |
|
elif self.model.conditioning_key == "crossattn": |
|
key = "c_crossattn" |
|
else: |
|
key = "c_film" |
|
|
|
cond = {key: cond} |
|
|
|
x_recon = self.model(x_noisy, t, **cond) |
|
|
|
if isinstance(x_recon, tuple) and not return_ids: |
|
return x_recon[0] |
|
else: |
|
return x_recon |
|
|
|
def p_mean_variance( |
|
self, |
|
x, |
|
c, |
|
t, |
|
clip_denoised: bool, |
|
return_codebook_ids=False, |
|
quantize_denoised=False, |
|
return_x0=False, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
): |
|
t_in = t |
|
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) |
|
|
|
if score_corrector is not None: |
|
assert self.parameterization == "eps" |
|
model_out = score_corrector.modify_score( |
|
self, model_out, x, t, c, **corrector_kwargs |
|
) |
|
|
|
if return_codebook_ids: |
|
model_out, logits = model_out |
|
|
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
else: |
|
raise NotImplementedError() |
|
|
|
if clip_denoised: |
|
x_recon.clamp_(-1.0, 1.0) |
|
if quantize_denoised: |
|
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) |
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( |
|
x_start=x_recon, x_t=x, t=t |
|
) |
|
if return_codebook_ids: |
|
return model_mean, posterior_variance, posterior_log_variance, logits |
|
elif return_x0: |
|
return model_mean, posterior_variance, posterior_log_variance, x_recon |
|
else: |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample( |
|
self, |
|
x, |
|
c, |
|
t, |
|
clip_denoised=False, |
|
repeat_noise=False, |
|
return_codebook_ids=False, |
|
quantize_denoised=False, |
|
return_x0=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
outputs = self.p_mean_variance( |
|
x=x, |
|
c=c, |
|
t=t, |
|
clip_denoised=clip_denoised, |
|
return_codebook_ids=return_codebook_ids, |
|
quantize_denoised=quantize_denoised, |
|
return_x0=return_x0, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
) |
|
if return_codebook_ids: |
|
raise DeprecationWarning("Support dropped.") |
|
model_mean, _, model_log_variance, logits = outputs |
|
elif return_x0: |
|
model_mean, _, model_log_variance, x0 = outputs |
|
else: |
|
model_mean, _, model_log_variance = outputs |
|
|
|
noise = noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.0: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
|
|
nonzero_mask = ( |
|
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() |
|
) |
|
|
|
if return_codebook_ids: |
|
return model_mean + nonzero_mask * ( |
|
0.5 * model_log_variance |
|
).exp() * noise, logits.argmax(dim=1) |
|
if return_x0: |
|
return ( |
|
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, |
|
x0, |
|
) |
|
else: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def progressive_denoising( |
|
self, |
|
cond, |
|
shape, |
|
verbose=True, |
|
callback=None, |
|
quantize_denoised=False, |
|
img_callback=None, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
batch_size=None, |
|
x_T=None, |
|
start_T=None, |
|
log_every_t=None, |
|
): |
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
timesteps = self.num_timesteps |
|
if batch_size is not None: |
|
b = batch_size if batch_size is not None else shape[0] |
|
shape = [batch_size] + list(shape) |
|
else: |
|
b = batch_size = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=self.device) |
|
else: |
|
img = x_T |
|
intermediates = [] |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = { |
|
key: cond[key][:batch_size] |
|
if not isinstance(cond[key], list) |
|
else list(map(lambda x: x[:batch_size], cond[key])) |
|
for key in cond |
|
} |
|
else: |
|
cond = ( |
|
[c[:batch_size] for c in cond] |
|
if isinstance(cond, list) |
|
else cond[:batch_size] |
|
) |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = ( |
|
tqdm( |
|
reversed(range(0, timesteps)), |
|
desc="Progressive Generation", |
|
total=timesteps, |
|
) |
|
if verbose |
|
else reversed(range(0, timesteps)) |
|
) |
|
if type(temperature) == float: |
|
temperature = [temperature] * timesteps |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=self.device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != "hybrid" |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img, x0_partial = self.p_sample( |
|
img, |
|
cond, |
|
ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised, |
|
return_x0=True, |
|
temperature=temperature[i], |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
) |
|
if mask is not None: |
|
assert x0 is not None |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(x0_partial) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(img, i) |
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_loop( |
|
self, |
|
cond, |
|
shape, |
|
return_intermediates=False, |
|
x_T=None, |
|
verbose=True, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
start_T=None, |
|
log_every_t=None, |
|
): |
|
|
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
device = self.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
intermediates = [img] |
|
if timesteps is None: |
|
timesteps = self.num_timesteps |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = ( |
|
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) |
|
if verbose |
|
else reversed(range(0, timesteps)) |
|
) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
assert x0.shape[2:3] == mask.shape[2:3] |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != "hybrid" |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img = self.p_sample( |
|
img, |
|
cond, |
|
ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised, |
|
) |
|
if mask is not None: |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(img) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(img, i) |
|
|
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
cond, |
|
batch_size=16, |
|
return_intermediates=False, |
|
x_T=None, |
|
verbose=True, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
shape=None, |
|
**kwargs, |
|
): |
|
if shape is None: |
|
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size) |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = { |
|
key: cond[key][:batch_size] |
|
if not isinstance(cond[key], list) |
|
else list(map(lambda x: x[:batch_size], cond[key])) |
|
for key in cond |
|
} |
|
else: |
|
cond = ( |
|
[c[:batch_size] for c in cond] |
|
if isinstance(cond, list) |
|
else cond[:batch_size] |
|
) |
|
return self.p_sample_loop( |
|
cond, |
|
shape, |
|
return_intermediates=return_intermediates, |
|
x_T=x_T, |
|
verbose=verbose, |
|
timesteps=timesteps, |
|
quantize_denoised=quantize_denoised, |
|
mask=mask, |
|
x0=x0, |
|
**kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def sample_log( |
|
self, |
|
cond, |
|
batch_size, |
|
ddim, |
|
ddim_steps, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
use_plms=False, |
|
mask=None, |
|
**kwargs, |
|
): |
|
|
|
if mask is not None: |
|
shape = (self.channels, mask.size()[-2], mask.size()[-1]) |
|
else: |
|
shape = (self.channels, self.latent_t_size, self.latent_f_size) |
|
|
|
intermediate = None |
|
if ddim and not use_plms: |
|
|
|
|
|
ddim_sampler = DDIMSampler(self) |
|
samples, intermediates = ddim_sampler.sample( |
|
ddim_steps, |
|
batch_size, |
|
shape, |
|
cond, |
|
verbose=False, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
mask=mask, |
|
**kwargs, |
|
) |
|
|
|
else: |
|
|
|
samples, intermediates = self.sample( |
|
cond=cond, |
|
batch_size=batch_size, |
|
return_intermediates=True, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
mask=mask, |
|
unconditional_conditioning=unconditional_conditioning, |
|
**kwargs, |
|
) |
|
|
|
return samples, intermediate |
|
|
|
@torch.no_grad() |
|
def generate_sample( |
|
self, |
|
batchs, |
|
ddim_steps=200, |
|
ddim_eta=1.0, |
|
x_T=None, |
|
n_candidate_gen_per_text=1, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
name="waveform", |
|
use_plms=False, |
|
save=False, |
|
**kwargs, |
|
): |
|
|
|
|
|
assert x_T is None |
|
try: |
|
batchs = iter(batchs) |
|
except TypeError: |
|
raise ValueError("The first input argument should be an iterable object") |
|
|
|
if use_plms: |
|
assert ddim_steps is not None |
|
use_ddim = ddim_steps is not None |
|
|
|
|
|
|
|
|
|
with self.ema_scope("Generate"): |
|
for batch in batchs: |
|
z, c = self.get_input( |
|
batch, |
|
self.first_stage_key, |
|
cond_key=self.cond_stage_key, |
|
return_first_stage_outputs=False, |
|
force_c_encode=True, |
|
return_original_cond=False, |
|
bs=None, |
|
) |
|
text = super().get_input(batch, "text") |
|
|
|
|
|
batch_size = z.shape[0] * n_candidate_gen_per_text |
|
c = torch.cat([c] * n_candidate_gen_per_text, dim=0) |
|
text = text * n_candidate_gen_per_text |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
unconditional_conditioning = ( |
|
self.cond_stage_model.get_unconditional_condition(batch_size) |
|
) |
|
|
|
samples, _ = self.sample_log( |
|
cond=c, |
|
batch_size=batch_size, |
|
x_T=x_T, |
|
ddim=use_ddim, |
|
ddim_steps=ddim_steps, |
|
eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
use_plms=use_plms, |
|
) |
|
|
|
if(torch.max(torch.abs(samples)) > 1e2): |
|
samples = torch.clip(samples, min=-10, max=10) |
|
|
|
mel = self.decode_first_stage(samples) |
|
|
|
waveform = self.mel_spectrogram_to_waveform(mel) |
|
|
|
if waveform.shape[0] > 1: |
|
similarity = self.cond_stage_model.cos_similarity( |
|
torch.FloatTensor(waveform).squeeze(1), text |
|
) |
|
|
|
best_index = [] |
|
for i in range(z.shape[0]): |
|
candidates = similarity[i :: z.shape[0]] |
|
max_index = torch.argmax(candidates).item() |
|
best_index.append(i + max_index * z.shape[0]) |
|
|
|
waveform = waveform[best_index] |
|
|
|
|
|
|
|
return waveform |
|
|
|
@torch.no_grad() |
|
def generate_sample_masked( |
|
self, |
|
batchs, |
|
ddim_steps=200, |
|
ddim_eta=1.0, |
|
x_T=None, |
|
n_candidate_gen_per_text=1, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
name="waveform", |
|
use_plms=False, |
|
time_mask_ratio_start_and_end=(0.25, 0.75), |
|
freq_mask_ratio_start_and_end=(0.75, 1.0), |
|
save=False, |
|
**kwargs, |
|
): |
|
|
|
|
|
assert x_T is None |
|
try: |
|
batchs = iter(batchs) |
|
except TypeError: |
|
raise ValueError("The first input argument should be an iterable object") |
|
|
|
if use_plms: |
|
assert ddim_steps is not None |
|
use_ddim = ddim_steps is not None |
|
|
|
|
|
|
|
|
|
with self.ema_scope("Generate"): |
|
for batch in batchs: |
|
z, c = self.get_input( |
|
batch, |
|
self.first_stage_key, |
|
cond_key=self.cond_stage_key, |
|
return_first_stage_outputs=False, |
|
force_c_encode=True, |
|
return_original_cond=False, |
|
bs=None, |
|
) |
|
text = super().get_input(batch, "text") |
|
|
|
|
|
batch_size = z.shape[0] * n_candidate_gen_per_text |
|
|
|
_, h, w = z.shape[0], z.shape[2], z.shape[3] |
|
|
|
mask = torch.ones(batch_size, h, w).to(self.device) |
|
|
|
mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0 |
|
mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0 |
|
mask = mask[:, None, ...] |
|
|
|
c = torch.cat([c] * n_candidate_gen_per_text, dim=0) |
|
text = text * n_candidate_gen_per_text |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
unconditional_conditioning = ( |
|
self.cond_stage_model.get_unconditional_condition(batch_size) |
|
) |
|
|
|
samples, _ = self.sample_log( |
|
cond=c, |
|
batch_size=batch_size, |
|
x_T=x_T, |
|
ddim=use_ddim, |
|
ddim_steps=ddim_steps, |
|
eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text) |
|
) |
|
|
|
mel = self.decode_first_stage(samples) |
|
|
|
waveform = self.mel_spectrogram_to_waveform(mel) |
|
|
|
if waveform.shape[0] > 1: |
|
similarity = self.cond_stage_model.cos_similarity( |
|
torch.FloatTensor(waveform).squeeze(1), text |
|
) |
|
|
|
best_index = [] |
|
for i in range(z.shape[0]): |
|
candidates = similarity[i :: z.shape[0]] |
|
max_index = torch.argmax(candidates).item() |
|
best_index.append(i + max_index * z.shape[0]) |
|
|
|
waveform = waveform[best_index] |
|
|
|
|
|
|
|
return waveform |