|
""" |
|
wild mixture of |
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py |
|
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py |
|
https://github.com/CompVis/taming-transformers |
|
-- merci |
|
""" |
|
import sys |
|
import os |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from contextlib import contextmanager |
|
from functools import partial |
|
from tqdm import tqdm |
|
|
|
from audioldm.utils import exists, default, count_params, instantiate_from_config |
|
from audioldm.latent_diffusion.ema import LitEma |
|
from audioldm.latent_diffusion.util import ( |
|
make_beta_schedule, |
|
extract_into_tensor, |
|
noise_like, |
|
) |
|
import soundfile as sf |
|
import os |
|
|
|
|
|
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def uniform_on_device(r1, r2, shape, device): |
|
return (r1 - r2) * torch.rand(*shape, device=device) + r2 |
|
|
|
|
|
class DiffusionWrapper(nn.Module): |
|
def __init__(self, diff_model_config, conditioning_key): |
|
super().__init__() |
|
self.diffusion_model = instantiate_from_config(diff_model_config) |
|
self.conditioning_key = conditioning_key |
|
assert self.conditioning_key in [ |
|
None, |
|
"concat", |
|
"crossattn", |
|
"hybrid", |
|
"adm", |
|
"film", |
|
] |
|
|
|
def forward( |
|
self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None |
|
): |
|
x = x.contiguous() |
|
t = t.contiguous() |
|
|
|
if self.conditioning_key is None: |
|
out = self.diffusion_model(x, t) |
|
elif self.conditioning_key == "concat": |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
out = self.diffusion_model(xc, t) |
|
elif self.conditioning_key == "crossattn": |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(x, t, context=cc) |
|
elif self.conditioning_key == "hybrid": |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc) |
|
elif ( |
|
self.conditioning_key == "film" |
|
): |
|
cc = c_film[0].squeeze(1) |
|
out = self.diffusion_model(x, t, y=cc) |
|
elif self.conditioning_key == "adm": |
|
cc = c_crossattn[0] |
|
out = self.diffusion_model(x, t, y=cc) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return out |
|
|
|
|
|
class DDPM(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
unet_config, |
|
timesteps=1000, |
|
beta_schedule="linear", |
|
loss_type="l2", |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
load_only_unet=False, |
|
monitor="val/loss", |
|
use_ema=True, |
|
first_stage_key="image", |
|
latent_t_size=256, |
|
latent_f_size=16, |
|
channels=3, |
|
log_every_t=100, |
|
clip_denoised=True, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
given_betas=None, |
|
original_elbo_weight=0.0, |
|
v_posterior=0.0, |
|
l_simple_weight=1.0, |
|
conditioning_key=None, |
|
parameterization="eps", |
|
scheduler_config=None, |
|
use_positional_encodings=False, |
|
learn_logvar=False, |
|
logvar_init=0.0, |
|
): |
|
super().__init__() |
|
assert parameterization in [ |
|
"eps", |
|
"x0", |
|
], 'currently only supporting "eps" and "x0"' |
|
self.parameterization = parameterization |
|
self.state = None |
|
|
|
self.cond_stage_model = None |
|
self.clip_denoised = clip_denoised |
|
self.log_every_t = log_every_t |
|
self.first_stage_key = first_stage_key |
|
|
|
self.latent_t_size = latent_t_size |
|
self.latent_f_size = latent_f_size |
|
|
|
self.channels = channels |
|
self.use_positional_encodings = use_positional_encodings |
|
self.model = DiffusionWrapper(unet_config, conditioning_key) |
|
count_params(self.model, verbose=True) |
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model) |
|
|
|
|
|
self.use_scheduler = scheduler_config is not None |
|
if self.use_scheduler: |
|
self.scheduler_config = scheduler_config |
|
|
|
self.v_posterior = v_posterior |
|
self.original_elbo_weight = original_elbo_weight |
|
self.l_simple_weight = l_simple_weight |
|
|
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
self.register_schedule( |
|
given_betas=given_betas, |
|
beta_schedule=beta_schedule, |
|
timesteps=timesteps, |
|
linear_start=linear_start, |
|
linear_end=linear_end, |
|
cosine_s=cosine_s, |
|
) |
|
|
|
self.loss_type = loss_type |
|
|
|
self.learn_logvar = learn_logvar |
|
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) |
|
if self.learn_logvar: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=True) |
|
else: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=False) |
|
|
|
self.logger_save_dir = None |
|
self.logger_project = None |
|
self.logger_version = None |
|
self.label_indices_total = None |
|
|
|
self.metrics_buffer = { |
|
"val/kullback_leibler_divergence_sigmoid": 15.0, |
|
"val/kullback_leibler_divergence_softmax": 10.0, |
|
"val/psnr": 0.0, |
|
"val/ssim": 0.0, |
|
"val/inception_score_mean": 1.0, |
|
"val/inception_score_std": 0.0, |
|
"val/kernel_inception_distance_mean": 0.0, |
|
"val/kernel_inception_distance_std": 0.0, |
|
"val/frechet_inception_distance": 133.0, |
|
"val/frechet_audio_distance": 32.0, |
|
} |
|
self.initial_learning_rate = None |
|
|
|
def get_log_dir(self): |
|
if ( |
|
self.logger_save_dir is None |
|
and self.logger_project is None |
|
and self.logger_version is None |
|
): |
|
return os.path.join( |
|
self.logger.save_dir, self.logger._project, self.logger.version |
|
) |
|
else: |
|
return os.path.join( |
|
self.logger_save_dir, self.logger_project, self.logger_version |
|
) |
|
|
|
def set_log_dir(self, save_dir, project, version): |
|
self.logger_save_dir = save_dir |
|
self.logger_project = project |
|
self.logger_version = version |
|
|
|
def register_schedule( |
|
self, |
|
given_betas=None, |
|
beta_schedule="linear", |
|
timesteps=1000, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
): |
|
if exists(given_betas): |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule( |
|
beta_schedule, |
|
timesteps, |
|
linear_start=linear_start, |
|
linear_end=linear_end, |
|
cosine_s=cosine_s, |
|
) |
|
alphas = 1.0 - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) |
|
|
|
(timesteps,) = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert ( |
|
alphas_cumprod.shape[0] == self.num_timesteps |
|
), "alphas have to be defined for each timestep" |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer("betas", to_torch(betas)) |
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) |
|
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer( |
|
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) |
|
) |
|
self.register_buffer( |
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) |
|
) |
|
self.register_buffer( |
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) |
|
) |
|
self.register_buffer( |
|
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) |
|
) |
|
|
|
|
|
posterior_variance = (1 - self.v_posterior) * betas * ( |
|
1.0 - alphas_cumprod_prev |
|
) / (1.0 - alphas_cumprod) + self.v_posterior * betas |
|
|
|
self.register_buffer("posterior_variance", to_torch(posterior_variance)) |
|
|
|
self.register_buffer( |
|
"posterior_log_variance_clipped", |
|
to_torch(np.log(np.maximum(posterior_variance, 1e-20))), |
|
) |
|
self.register_buffer( |
|
"posterior_mean_coef1", |
|
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), |
|
) |
|
self.register_buffer( |
|
"posterior_mean_coef2", |
|
to_torch( |
|
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) |
|
), |
|
) |
|
|
|
if self.parameterization == "eps": |
|
lvlb_weights = self.betas**2 / ( |
|
2 |
|
* self.posterior_variance |
|
* to_torch(alphas) |
|
* (1 - self.alphas_cumprod) |
|
) |
|
elif self.parameterization == "x0": |
|
lvlb_weights = ( |
|
0.5 |
|
* np.sqrt(torch.Tensor(alphas_cumprod)) |
|
/ (2.0 * 1 - torch.Tensor(alphas_cumprod)) |
|
) |
|
else: |
|
raise NotImplementedError("mu not supported") |
|
|
|
lvlb_weights[0] = lvlb_weights[1] |
|
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) |
|
assert not torch.isnan(self.lvlb_weights).all() |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
if context is not None: |
|
|
|
pass |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
if context is not None: |
|
|
|
pass |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract_into_tensor( |
|
self.log_one_minus_alphas_cumprod, t, x_start.shape |
|
) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
* noise |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, clip_denoised: bool): |
|
model_out = self.model(x, t) |
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
if clip_denoised: |
|
x_recon.clamp_(-1.0, 1.0) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( |
|
x_start=x_recon, x_t=x, t=t |
|
) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance( |
|
x=x, t=t, clip_denoised=clip_denoised |
|
) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = ( |
|
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() |
|
) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, shape, return_intermediates=False): |
|
device = self.betas.device |
|
b = shape[0] |
|
img = torch.randn(shape, device=device) |
|
intermediates = [img] |
|
for i in tqdm( |
|
reversed(range(0, self.num_timesteps)), |
|
desc="Sampling t", |
|
total=self.num_timesteps, |
|
): |
|
img = self.p_sample( |
|
img, |
|
torch.full((b,), i, device=device, dtype=torch.long), |
|
clip_denoised=self.clip_denoised, |
|
) |
|
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: |
|
intermediates.append(img) |
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, batch_size=16, return_intermediates=False): |
|
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size) |
|
channels = self.channels |
|
return self.p_sample_loop(shape, return_intermediates=return_intermediates) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) |
|
* noise |
|
) |
|
|
|
def forward(self, x, *args, **kwargs): |
|
t = torch.randint( |
|
0, self.num_timesteps, (x.shape[0],), device=self.device |
|
).long() |
|
return self.p_losses(x, t, *args, **kwargs) |
|
|
|
def get_input(self, batch, k): |
|
|
|
fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch |
|
ret = {} |
|
|
|
ret["fbank"] = ( |
|
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float() |
|
) |
|
ret["stft"] = log_magnitudes_stft.to( |
|
memory_format=torch.contiguous_format |
|
).float() |
|
|
|
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float() |
|
ret["text"] = list(text) |
|
ret["fname"] = fname |
|
|
|
return ret[k] |
|
|