|
import numpy as np |
|
|
|
|
|
def a_weight(fs, n_fft, min_db=-80.0): |
|
freq = np.linspace(0, fs // 2, n_fft // 2 + 1) |
|
freq_sq = np.power(freq, 2) |
|
freq_sq[0] = 1.0 |
|
weight = 2.0 + 20.0 * (2 * np.log10(12194) + 2 * np.log10(freq_sq) |
|
- np.log10(freq_sq + 12194 ** 2) |
|
- np.log10(freq_sq + 20.6 ** 2) |
|
- 0.5 * np.log10(freq_sq + 107.7 ** 2) |
|
- 0.5 * np.log10(freq_sq + 737.9 ** 2)) |
|
weight = np.maximum(weight, min_db) |
|
|
|
return weight |
|
|
|
|
|
def compute_gain(sound, fs, min_db=-80.0, mode="A_weighting"): |
|
if fs == 16000: |
|
n_fft = 2048 |
|
elif fs == 44100: |
|
n_fft = 4096 |
|
else: |
|
raise Exception("Invalid fs {}".format(fs)) |
|
stride = n_fft // 2 |
|
|
|
gain = [] |
|
for i in range(0, len(sound) - n_fft + 1, stride): |
|
if mode == "RMSE": |
|
g = np.mean(sound[i: i + n_fft] ** 2) |
|
elif mode == "A_weighting": |
|
spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft]) |
|
power_spec = np.abs(spec) ** 2 |
|
a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10) |
|
g = np.sum(a_weighted_spec) |
|
else: |
|
raise Exception("Invalid mode {}".format(mode)) |
|
gain.append(g) |
|
|
|
gain = np.array(gain) |
|
gain = np.maximum(gain, np.power(10, min_db / 10)) |
|
gain_db = 10 * np.log10(gain) |
|
return gain_db |
|
|
|
|
|
def mix(sound1, sound2, r, fs): |
|
gain1 = np.max(compute_gain(sound1, fs)) |
|
gain2 = np.max(compute_gain(sound2, fs)) |
|
t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r) |
|
sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2)) |
|
return sound |