Upload app (14).py
Browse files- app (14).py +351 -0
app (14).py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
12 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
13 |
+
from kolors.models.controlnet import ControlNetModel
|
14 |
+
from diffusers import AutoencoderKL
|
15 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
+
from diffusers import EulerDiscreteScheduler
|
17 |
+
from PIL import Image
|
18 |
+
from annotator.midas import MidasDetector
|
19 |
+
from annotator.dwpose import DWposeDetector
|
20 |
+
from annotator.util import resize_image, HWC3
|
21 |
+
|
22 |
+
|
23 |
+
device = "cuda"
|
24 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
25 |
+
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
26 |
+
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
27 |
+
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
|
28 |
+
|
29 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
30 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
31 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
32 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
33 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
34 |
+
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
35 |
+
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
36 |
+
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
|
37 |
+
|
38 |
+
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
39 |
+
vae=vae,
|
40 |
+
controlnet = controlnet_depth,
|
41 |
+
text_encoder=text_encoder,
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
unet=unet,
|
44 |
+
scheduler=scheduler,
|
45 |
+
force_zeros_for_empty_prompt=False
|
46 |
+
)
|
47 |
+
|
48 |
+
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
49 |
+
vae=vae,
|
50 |
+
controlnet = controlnet_canny,
|
51 |
+
text_encoder=text_encoder,
|
52 |
+
tokenizer=tokenizer,
|
53 |
+
unet=unet,
|
54 |
+
scheduler=scheduler,
|
55 |
+
force_zeros_for_empty_prompt=False
|
56 |
+
)
|
57 |
+
|
58 |
+
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
|
59 |
+
vae=vae,
|
60 |
+
controlnet = controlnet_pose,
|
61 |
+
text_encoder=text_encoder,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
unet=unet,
|
64 |
+
scheduler=scheduler,
|
65 |
+
force_zeros_for_empty_prompt=False
|
66 |
+
)
|
67 |
+
|
68 |
+
@spaces.GPU
|
69 |
+
def process_canny_condition(image, canny_threods=[100,200]):
|
70 |
+
np_image = image.copy()
|
71 |
+
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
|
72 |
+
np_image = np_image[:, :, None]
|
73 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
74 |
+
np_image = HWC3(np_image)
|
75 |
+
return Image.fromarray(np_image)
|
76 |
+
|
77 |
+
model_midas = MidasDetector()
|
78 |
+
@spaces.GPU
|
79 |
+
def process_depth_condition_midas(img, res = 1024):
|
80 |
+
h,w,_ = img.shape
|
81 |
+
img = resize_image(HWC3(img), res)
|
82 |
+
result = HWC3(model_midas(img))
|
83 |
+
result = cv2.resize(result, (w,h))
|
84 |
+
return Image.fromarray(result)
|
85 |
+
|
86 |
+
model_dwpose = DWposeDetector()
|
87 |
+
@spaces.GPU
|
88 |
+
def process_dwpose_condition(image, res=1024):
|
89 |
+
h,w,_ = image.shape
|
90 |
+
img = resize_image(HWC3(image), res)
|
91 |
+
out_res, out_img = model_dwpose(image)
|
92 |
+
result = HWC3(out_img)
|
93 |
+
result = cv2.resize( result, (w,h) )
|
94 |
+
return Image.fromarray(result)
|
95 |
+
|
96 |
+
MAX_SEED = np.iinfo(np.int32).max
|
97 |
+
MAX_IMAGE_SIZE = 1024
|
98 |
+
|
99 |
+
@spaces.GPU
|
100 |
+
def infer_depth(prompt,
|
101 |
+
image = None,
|
102 |
+
negative_prompt = "nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
103 |
+
seed = 397886929,
|
104 |
+
randomize_seed = False,
|
105 |
+
guidance_scale = 6.0,
|
106 |
+
num_inference_steps = 50,
|
107 |
+
controlnet_conditioning_scale = 0.7,
|
108 |
+
control_guidance_end = 0.9,
|
109 |
+
strength = 1.0
|
110 |
+
):
|
111 |
+
if randomize_seed:
|
112 |
+
seed = random.randint(0, MAX_SEED)
|
113 |
+
generator = torch.Generator().manual_seed(seed)
|
114 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
115 |
+
pipe = pipe_depth.to("cuda")
|
116 |
+
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
|
117 |
+
image = pipe(
|
118 |
+
prompt= prompt ,
|
119 |
+
image = init_image,
|
120 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
121 |
+
control_guidance_end = control_guidance_end,
|
122 |
+
strength= strength ,
|
123 |
+
control_image = condi_img,
|
124 |
+
negative_prompt= negative_prompt ,
|
125 |
+
num_inference_steps= num_inference_steps,
|
126 |
+
guidance_scale= guidance_scale,
|
127 |
+
num_images_per_prompt=1,
|
128 |
+
generator=generator,
|
129 |
+
).images[0]
|
130 |
+
return [condi_img, image], seed
|
131 |
+
|
132 |
+
@spaces.GPU
|
133 |
+
def infer_canny(prompt,
|
134 |
+
image = None,
|
135 |
+
negative_prompt = "nsfw๏ผ่ธ้จ้ดๅฝฑ๏ฟฝ๏ฟฝ๏ฟฝไฝๅ่พจ็๏ผjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
136 |
+
seed = 397886929,
|
137 |
+
randomize_seed = False,
|
138 |
+
guidance_scale = 6.0,
|
139 |
+
num_inference_steps = 50,
|
140 |
+
controlnet_conditioning_scale = 0.7,
|
141 |
+
control_guidance_end = 0.9,
|
142 |
+
strength = 1.0
|
143 |
+
):
|
144 |
+
if randomize_seed:
|
145 |
+
seed = random.randint(0, MAX_SEED)
|
146 |
+
generator = torch.Generator().manual_seed(seed)
|
147 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
148 |
+
pipe = pipe_canny.to("cuda")
|
149 |
+
condi_img = process_canny_condition(np.array(init_image))
|
150 |
+
image = pipe(
|
151 |
+
prompt= prompt ,
|
152 |
+
image = init_image,
|
153 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
154 |
+
control_guidance_end = control_guidance_end,
|
155 |
+
strength= strength ,
|
156 |
+
control_image = condi_img,
|
157 |
+
negative_prompt= negative_prompt ,
|
158 |
+
num_inference_steps= num_inference_steps,
|
159 |
+
guidance_scale= guidance_scale,
|
160 |
+
num_images_per_prompt=1,
|
161 |
+
generator=generator,
|
162 |
+
).images[0]
|
163 |
+
return [condi_img, image], seed
|
164 |
+
|
165 |
+
@spaces.GPU
|
166 |
+
def infer_pose(prompt,
|
167 |
+
image = None,
|
168 |
+
negative_prompt = "nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
169 |
+
seed = 66,
|
170 |
+
randomize_seed = False,
|
171 |
+
guidance_scale = 6.0,
|
172 |
+
num_inference_steps = 50,
|
173 |
+
controlnet_conditioning_scale = 0.7,
|
174 |
+
control_guidance_end = 0.9,
|
175 |
+
strength = 1.0
|
176 |
+
):
|
177 |
+
if randomize_seed:
|
178 |
+
seed = random.randint(0, MAX_SEED)
|
179 |
+
generator = torch.Generator().manual_seed(seed)
|
180 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
181 |
+
pipe = pipe_pose.to("cuda")
|
182 |
+
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
|
183 |
+
image = pipe(
|
184 |
+
prompt= prompt ,
|
185 |
+
image = init_image,
|
186 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
187 |
+
control_guidance_end = control_guidance_end,
|
188 |
+
strength= strength ,
|
189 |
+
control_image = condi_img,
|
190 |
+
negative_prompt= negative_prompt ,
|
191 |
+
num_inference_steps= num_inference_steps,
|
192 |
+
guidance_scale= guidance_scale,
|
193 |
+
num_images_per_prompt=1,
|
194 |
+
generator=generator,
|
195 |
+
).images[0]
|
196 |
+
return [condi_img, image], seed
|
197 |
+
|
198 |
+
|
199 |
+
canny_examples = [
|
200 |
+
["์๋ฆ๋ค์ด ์๋
, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
|
201 |
+
"image/woman_1.png"],
|
202 |
+
["ํ๋
ธ๋ผ๋ง, ์ปต ์์ ์์์๋ ๊ท์ฌ์ด ํฐ ๊ฐ์์ง, ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๋, ์ ๋๋ฉ์ด์
์คํ์ผ, 3D ๋ ๋๋ง, ์ฅํ
์ธ ๋ ๋",
|
203 |
+
"image/dog.png"]
|
204 |
+
]
|
205 |
+
|
206 |
+
depth_examples = [
|
207 |
+
["์ ์นด์ด ๋ง์ฝํ ์คํ์ผ, ํ๋ถํ ์๊ฐ, ์ด๋ก ์
์ธ ๋ฅผ ์
์ ์ฌ์ฑ์ด ๋คํ์ ์ ์๋, ์๋ฆ๋ค์ด ํ๊ฒฝ, ๋ง๊ณ ๋ฐ์, ์ผ๋ฃฉ์ง ๋น๊ณผ ๊ทธ๋ฆผ์, ์ต๊ณ ์ ํ์ง, ์ด์ธ๋ฐ, 8K ํ์ง",
|
208 |
+
"image/woman_2.png"],
|
209 |
+
["ํ๋ คํ ์์์ ์์ ์, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
|
210 |
+
"image/bird.png"]
|
211 |
+
]
|
212 |
+
|
213 |
+
pose_examples = [
|
214 |
+
["๋ณด๋ผ์ ํผํ ์ฌ๋ฆฌ๋ธ ๋๋ ์ค๋ฅผ ์
๊ณ ์๊ด๊ณผ ํฐ์ ๋ ์ด์ค ์ฅ๊ฐ์ ๋ ์๋
๊ฐ ์ ์์ผ๋ก ์ผ๊ตด์ ๊ฐ์ธ๊ณ ์๋, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
|
215 |
+
"image/woman_3.png"],
|
216 |
+
["๊ฒ์์ ์คํฌ์ธ ์ฌํท๊ณผ ํฐ์ ์ด๋๋ฅผ ์
๊ณ ๋ชฉ๊ฑธ์ด๋ฅผ ํ ์ฌ์ฑ์ด ๊ฑฐ๋ฆฌ์ ์ ์๋, ๋ฐฐ๊ฒฝ์ ๋นจ๊ฐ ๊ฑด๋ฌผ๊ณผ ๋
น์ ๋๋ฌด, ๊ณ ํ์ง, ๋งค์ฐ ์ ๋ช
, ์์ํ ์์, ์ด๊ณ ํด์๋, ์ต์์ ํ์ง, 8k, ๊ณ ํ์ง, 4K",
|
217 |
+
"image/woman_4.png"]
|
218 |
+
]
|
219 |
+
|
220 |
+
css = """
|
221 |
+
footer {
|
222 |
+
visibility: hidden;
|
223 |
+
}
|
224 |
+
"""
|
225 |
+
|
226 |
+
|
227 |
+
def load_description(fp):
|
228 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
229 |
+
content = f.read()
|
230 |
+
return content
|
231 |
+
|
232 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
|
233 |
+
with gr.Row():
|
234 |
+
with gr.Column(elem_id="col-left"):
|
235 |
+
with gr.Row():
|
236 |
+
prompt = gr.Textbox(
|
237 |
+
label="ํ๋กฌํํธ",
|
238 |
+
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์",
|
239 |
+
lines=2
|
240 |
+
)
|
241 |
+
with gr.Row():
|
242 |
+
image = gr.Image(label="์ด๋ฏธ์ง", type="pil")
|
243 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
244 |
+
negative_prompt = gr.Textbox(
|
245 |
+
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ",
|
246 |
+
placeholder="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์",
|
247 |
+
visible=True,
|
248 |
+
value="nsfw, ์ผ๊ตด ๊ทธ๋ฆผ์, ์ ํด์๋, jpeg ์ํฐํฉํธ, ํ๋ฆฟํจ, ์ด์
ํจ, ๊ฒ์ ์ผ๊ตด, ๋ค์จ ์กฐ๋ช
"
|
249 |
+
)
|
250 |
+
seed = gr.Slider(
|
251 |
+
label="์๋",
|
252 |
+
minimum=0,
|
253 |
+
maximum=MAX_SEED,
|
254 |
+
step=1,
|
255 |
+
value=0,
|
256 |
+
)
|
257 |
+
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True)
|
258 |
+
with gr.Row():
|
259 |
+
guidance_scale = gr.Slider(
|
260 |
+
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
|
261 |
+
minimum=0.0,
|
262 |
+
maximum=10.0,
|
263 |
+
step=0.1,
|
264 |
+
value=6.0,
|
265 |
+
)
|
266 |
+
num_inference_steps = gr.Slider(
|
267 |
+
label="์ถ๋ก ๋จ๊ณ ์",
|
268 |
+
minimum=10,
|
269 |
+
maximum=50,
|
270 |
+
step=1,
|
271 |
+
value=30,
|
272 |
+
)
|
273 |
+
with gr.Row():
|
274 |
+
controlnet_conditioning_scale = gr.Slider(
|
275 |
+
label="์ปจํธ๋กค๋ท ์ปจ๋์
๋ ์ค์ผ์ผ",
|
276 |
+
minimum=0.0,
|
277 |
+
maximum=1.0,
|
278 |
+
step=0.1,
|
279 |
+
value=0.7,
|
280 |
+
)
|
281 |
+
control_guidance_end = gr.Slider(
|
282 |
+
label="์ปจํธ๋กค ๊ฐ์ด๋์ค ์ข
๋ฃ",
|
283 |
+
minimum=0.0,
|
284 |
+
maximum=1.0,
|
285 |
+
step=0.1,
|
286 |
+
value=0.9,
|
287 |
+
)
|
288 |
+
with gr.Row():
|
289 |
+
strength = gr.Slider(
|
290 |
+
label="๊ฐ๋",
|
291 |
+
minimum=0.0,
|
292 |
+
maximum=1.0,
|
293 |
+
step=0.1,
|
294 |
+
value=1.0,
|
295 |
+
)
|
296 |
+
with gr.Row():
|
297 |
+
canny_button = gr.Button("์บ๋", elem_id="button")
|
298 |
+
depth_button = gr.Button("๊น์ด", elem_id="button")
|
299 |
+
pose_button = gr.Button("ํฌ์ฆ", elem_id="button")
|
300 |
+
|
301 |
+
with gr.Column(elem_id="col-right"):
|
302 |
+
result = gr.Gallery(label="๊ฒฐ๊ณผ", show_label=False, columns=2)
|
303 |
+
seed_used = gr.Number(label="์ฌ์ฉ๋ ์๋")
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
with gr.Row():
|
308 |
+
gr.Examples(
|
309 |
+
fn = infer_canny,
|
310 |
+
examples = canny_examples,
|
311 |
+
inputs = [prompt, image],
|
312 |
+
outputs = [result, seed_used],
|
313 |
+
label = "Canny"
|
314 |
+
)
|
315 |
+
with gr.Row():
|
316 |
+
gr.Examples(
|
317 |
+
fn = infer_depth,
|
318 |
+
examples = depth_examples,
|
319 |
+
inputs = [prompt, image],
|
320 |
+
outputs = [result, seed_used],
|
321 |
+
label = "Depth"
|
322 |
+
)
|
323 |
+
|
324 |
+
with gr.Row():
|
325 |
+
gr.Examples(
|
326 |
+
fn = infer_pose,
|
327 |
+
examples = pose_examples,
|
328 |
+
inputs = [prompt, image],
|
329 |
+
outputs = [result, seed_used],
|
330 |
+
label = "Pose"
|
331 |
+
)
|
332 |
+
|
333 |
+
canny_button.click(
|
334 |
+
fn = infer_canny,
|
335 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
336 |
+
outputs = [result, seed_used]
|
337 |
+
)
|
338 |
+
|
339 |
+
depth_button.click(
|
340 |
+
fn = infer_depth,
|
341 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
342 |
+
outputs = [result, seed_used]
|
343 |
+
)
|
344 |
+
|
345 |
+
pose_button.click(
|
346 |
+
fn = infer_pose,
|
347 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
348 |
+
outputs = [result, seed_used]
|
349 |
+
)
|
350 |
+
|
351 |
+
Kolors.queue().launch(debug=True)
|