|
import torch |
|
from collections import Counter |
|
from os import path as osp |
|
from torch import distributed as dist |
|
from tqdm import tqdm |
|
|
|
from basicsr.metrics import calculate_metric |
|
from basicsr.utils import get_root_logger, imwrite, tensor2img |
|
from basicsr.utils.dist_util import get_dist_info |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
from .sr_model import SRModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class VideoBaseModel(SRModel): |
|
"""Base video SR model.""" |
|
|
|
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
dataset = dataloader.dataset |
|
dataset_name = dataset.opt['name'] |
|
with_metrics = self.opt['val']['metrics'] is not None |
|
|
|
|
|
|
|
|
|
|
|
if with_metrics: |
|
if not hasattr(self, 'metric_results'): |
|
self.metric_results = {} |
|
num_frame_each_folder = Counter(dataset.data_info['folder']) |
|
for folder, num_frame in num_frame_each_folder.items(): |
|
self.metric_results[folder] = torch.zeros( |
|
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda') |
|
|
|
self._initialize_best_metric_results(dataset_name) |
|
|
|
rank, world_size = get_dist_info() |
|
if with_metrics: |
|
for _, tensor in self.metric_results.items(): |
|
tensor.zero_() |
|
|
|
metric_data = dict() |
|
|
|
if rank == 0: |
|
pbar = tqdm(total=len(dataset), unit='frame') |
|
for idx in range(rank, len(dataset), world_size): |
|
val_data = dataset[idx] |
|
val_data['lq'].unsqueeze_(0) |
|
val_data['gt'].unsqueeze_(0) |
|
folder = val_data['folder'] |
|
frame_idx, max_idx = val_data['idx'].split('/') |
|
lq_path = val_data['lq_path'] |
|
|
|
self.feed_data(val_data) |
|
self.test() |
|
visuals = self.get_current_visuals() |
|
result_img = tensor2img([visuals['result']]) |
|
metric_data['img'] = result_img |
|
if 'gt' in visuals: |
|
gt_img = tensor2img([visuals['gt']]) |
|
metric_data['img2'] = gt_img |
|
del self.gt |
|
|
|
|
|
del self.lq |
|
del self.output |
|
torch.cuda.empty_cache() |
|
|
|
if save_img: |
|
if self.opt['is_train']: |
|
raise NotImplementedError('saving image is not supported during training.') |
|
else: |
|
if 'vimeo' in dataset_name.lower(): |
|
split_result = lq_path.split('/') |
|
img_name = f'{split_result[-3]}_{split_result[-2]}_{split_result[-1].split(".")[0]}' |
|
else: |
|
img_name = osp.splitext(osp.basename(lq_path))[0] |
|
|
|
if self.opt['val']['suffix']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, |
|
f'{img_name}_{self.opt["val"]["suffix"]}.png') |
|
else: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, |
|
f'{img_name}_{self.opt["name"]}.png') |
|
imwrite(result_img, save_img_path) |
|
|
|
if with_metrics: |
|
|
|
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()): |
|
result = calculate_metric(metric_data, opt_) |
|
self.metric_results[folder][int(frame_idx), metric_idx] += result |
|
|
|
|
|
if rank == 0: |
|
for _ in range(world_size): |
|
pbar.update(1) |
|
pbar.set_description(f'Test {folder}: {int(frame_idx) + world_size}/{max_idx}') |
|
if rank == 0: |
|
pbar.close() |
|
|
|
if with_metrics: |
|
if self.opt['dist']: |
|
|
|
for _, tensor in self.metric_results.items(): |
|
dist.reduce(tensor, 0) |
|
dist.barrier() |
|
else: |
|
pass |
|
|
|
if rank == 0: |
|
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) |
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
logger = get_root_logger() |
|
logger.warning('nondist_validation is not implemented. Run dist_validation.') |
|
self.dist_validation(dataloader, current_iter, tb_logger, save_img) |
|
|
|
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): |
|
|
|
|
|
|
|
|
|
|
|
|
|
metric_results_avg = { |
|
folder: torch.mean(tensor, dim=0).cpu() |
|
for (folder, tensor) in self.metric_results.items() |
|
} |
|
|
|
|
|
|
|
|
|
total_avg_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} |
|
for folder, tensor in metric_results_avg.items(): |
|
for idx, metric in enumerate(total_avg_results.keys()): |
|
total_avg_results[metric] += metric_results_avg[folder][idx].item() |
|
|
|
for metric in total_avg_results.keys(): |
|
total_avg_results[metric] /= len(metric_results_avg) |
|
|
|
self._update_best_metric_result(dataset_name, metric, total_avg_results[metric], current_iter) |
|
|
|
|
|
log_str = f'Validation {dataset_name}\n' |
|
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): |
|
log_str += f'\t # {metric}: {value:.4f}' |
|
for folder, tensor in metric_results_avg.items(): |
|
log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}' |
|
if hasattr(self, 'best_metric_results'): |
|
log_str += (f'\n\t Best: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ ' |
|
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter') |
|
log_str += '\n' |
|
|
|
logger = get_root_logger() |
|
logger.info(log_str) |
|
if tb_logger: |
|
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): |
|
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) |
|
for folder, tensor in metric_results_avg.items(): |
|
tb_logger.add_scalar(f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter) |
|
|