|
import math |
|
from collections import Counter |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
|
|
|
|
class MultiStepRestartLR(_LRScheduler): |
|
""" MultiStep with restarts learning rate scheme. |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
milestones (list): Iterations that will decrease learning rate. |
|
gamma (float): Decrease ratio. Default: 0.1. |
|
restarts (list): Restart iterations. Default: [0]. |
|
restart_weights (list): Restart weights at each restart iteration. |
|
Default: [1]. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, optimizer, milestones, gamma=0.1, restarts=(0, ), restart_weights=(1, ), last_epoch=-1): |
|
self.milestones = Counter(milestones) |
|
self.gamma = gamma |
|
self.restarts = restarts |
|
self.restart_weights = restart_weights |
|
assert len(self.restarts) == len(self.restart_weights), 'restarts and their weights do not match.' |
|
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch in self.restarts: |
|
weight = self.restart_weights[self.restarts.index(self.last_epoch)] |
|
return [group['initial_lr'] * weight for group in self.optimizer.param_groups] |
|
if self.last_epoch not in self.milestones: |
|
return [group['lr'] for group in self.optimizer.param_groups] |
|
return [group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups] |
|
|
|
|
|
def get_position_from_periods(iteration, cumulative_period): |
|
"""Get the position from a period list. |
|
|
|
It will return the index of the right-closest number in the period list. |
|
For example, the cumulative_period = [100, 200, 300, 400], |
|
if iteration == 50, return 0; |
|
if iteration == 210, return 2; |
|
if iteration == 300, return 2. |
|
|
|
Args: |
|
iteration (int): Current iteration. |
|
cumulative_period (list[int]): Cumulative period list. |
|
|
|
Returns: |
|
int: The position of the right-closest number in the period list. |
|
""" |
|
for i, period in enumerate(cumulative_period): |
|
if iteration <= period: |
|
return i |
|
|
|
|
|
class CosineAnnealingRestartLR(_LRScheduler): |
|
""" Cosine annealing with restarts learning rate scheme. |
|
|
|
An example of config: |
|
periods = [10, 10, 10, 10] |
|
restart_weights = [1, 0.5, 0.5, 0.5] |
|
eta_min=1e-7 |
|
|
|
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the |
|
scheduler will restart with the weights in restart_weights. |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
periods (list): Period for each cosine anneling cycle. |
|
restart_weights (list): Restart weights at each restart iteration. |
|
Default: [1]. |
|
eta_min (float): The minimum lr. Default: 0. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, optimizer, periods, restart_weights=(1, ), eta_min=0, last_epoch=-1): |
|
self.periods = periods |
|
self.restart_weights = restart_weights |
|
self.eta_min = eta_min |
|
assert (len(self.periods) == len( |
|
self.restart_weights)), 'periods and restart_weights should have the same length.' |
|
self.cumulative_period = [sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))] |
|
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
idx = get_position_from_periods(self.last_epoch, self.cumulative_period) |
|
current_weight = self.restart_weights[idx] |
|
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1] |
|
current_period = self.periods[idx] |
|
|
|
return [ |
|
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) * |
|
(1 + math.cos(math.pi * ((self.last_epoch - nearest_restart) / current_period))) |
|
for base_lr in self.base_lrs |
|
] |
|
|