|
import torch |
|
from collections import OrderedDict |
|
from os import path as osp |
|
from tqdm import tqdm |
|
|
|
from basicsr.archs import build_network |
|
from basicsr.losses import build_loss |
|
from basicsr.metrics import calculate_metric |
|
from basicsr.utils import imwrite, tensor2img |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
from .sr_model import SRModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class HiFaceGANModel(SRModel): |
|
"""HiFaceGAN model for generic-purpose face restoration. |
|
No prior modeling required, works for any degradations. |
|
Currently doesn't support EMA for inference. |
|
""" |
|
|
|
def init_training_settings(self): |
|
|
|
train_opt = self.opt['train'] |
|
self.ema_decay = train_opt.get('ema_decay', 0) |
|
if self.ema_decay > 0: |
|
raise (NotImplementedError('HiFaceGAN does not support EMA now. Pass')) |
|
|
|
self.net_g.train() |
|
|
|
self.net_d = build_network(self.opt['network_d']) |
|
self.net_d = self.model_to_device(self.net_d) |
|
self.print_network(self.net_d) |
|
|
|
|
|
|
|
if train_opt.get('pixel_opt'): |
|
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) |
|
else: |
|
self.cri_pix = None |
|
|
|
if train_opt.get('perceptual_opt'): |
|
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) |
|
else: |
|
self.cri_perceptual = None |
|
|
|
if train_opt.get('feature_matching_opt'): |
|
self.cri_feat = build_loss(train_opt['feature_matching_opt']).to(self.device) |
|
else: |
|
self.cri_feat = None |
|
|
|
if self.cri_pix is None and self.cri_perceptual is None: |
|
raise ValueError('Both pixel and perceptual losses are None.') |
|
|
|
if train_opt.get('gan_opt'): |
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) |
|
|
|
self.net_d_iters = train_opt.get('net_d_iters', 1) |
|
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0) |
|
|
|
self.setup_optimizers() |
|
self.setup_schedulers() |
|
|
|
def setup_optimizers(self): |
|
train_opt = self.opt['train'] |
|
|
|
optim_type = train_opt['optim_g'].pop('type') |
|
self.optimizer_g = self.get_optimizer(optim_type, self.net_g.parameters(), **train_opt['optim_g']) |
|
self.optimizers.append(self.optimizer_g) |
|
|
|
optim_type = train_opt['optim_d'].pop('type') |
|
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d']) |
|
self.optimizers.append(self.optimizer_d) |
|
|
|
def discriminate(self, input_lq, output, ground_truth): |
|
""" |
|
This is a conditional (on the input) discriminator |
|
In Batch Normalization, the fake and real images are |
|
recommended to be in the same batch to avoid disparate |
|
statistics in fake and real images. |
|
So both fake and real images are fed to D all at once. |
|
""" |
|
h, w = output.shape[-2:] |
|
if output.shape[-2:] != input_lq.shape[-2:]: |
|
lq = torch.nn.functional.interpolate(input_lq, (h, w)) |
|
real = torch.nn.functional.interpolate(ground_truth, (h, w)) |
|
fake_concat = torch.cat([lq, output], dim=1) |
|
real_concat = torch.cat([lq, real], dim=1) |
|
else: |
|
fake_concat = torch.cat([input_lq, output], dim=1) |
|
real_concat = torch.cat([input_lq, ground_truth], dim=1) |
|
|
|
fake_and_real = torch.cat([fake_concat, real_concat], dim=0) |
|
discriminator_out = self.net_d(fake_and_real) |
|
pred_fake, pred_real = self._divide_pred(discriminator_out) |
|
return pred_fake, pred_real |
|
|
|
@staticmethod |
|
def _divide_pred(pred): |
|
""" |
|
Take the prediction of fake and real images from the combined batch. |
|
The prediction contains the intermediate outputs of multiscale GAN, |
|
so it's usually a list |
|
""" |
|
if type(pred) == list: |
|
fake = [] |
|
real = [] |
|
for p in pred: |
|
fake.append([tensor[:tensor.size(0) // 2] for tensor in p]) |
|
real.append([tensor[tensor.size(0) // 2:] for tensor in p]) |
|
else: |
|
fake = pred[:pred.size(0) // 2] |
|
real = pred[pred.size(0) // 2:] |
|
|
|
return fake, real |
|
|
|
def optimize_parameters(self, current_iter): |
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
|
|
self.optimizer_g.zero_grad() |
|
self.output = self.net_g(self.lq) |
|
|
|
l_g_total = 0 |
|
loss_dict = OrderedDict() |
|
|
|
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): |
|
|
|
if self.cri_pix: |
|
l_g_pix = self.cri_pix(self.output, self.gt) |
|
l_g_total += l_g_pix |
|
loss_dict['l_g_pix'] = l_g_pix |
|
|
|
|
|
if self.cri_perceptual: |
|
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) |
|
if l_g_percep is not None: |
|
l_g_total += l_g_percep |
|
loss_dict['l_g_percep'] = l_g_percep |
|
if l_g_style is not None: |
|
l_g_total += l_g_style |
|
loss_dict['l_g_style'] = l_g_style |
|
|
|
|
|
pred_fake, pred_real = self.discriminate(self.lq, self.output, self.gt) |
|
l_g_gan = self.cri_gan(pred_fake, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan'] = l_g_gan |
|
|
|
|
|
if self.cri_feat: |
|
l_g_feat = self.cri_feat(pred_fake, pred_real) |
|
l_g_total += l_g_feat |
|
loss_dict['l_g_feat'] = l_g_feat |
|
|
|
l_g_total.backward() |
|
self.optimizer_g.step() |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
|
|
self.optimizer_d.zero_grad() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_fake, pred_real = self.discriminate(self.lq, self.output.detach(), self.gt) |
|
l_d_real = self.cri_gan(pred_real, True, is_disc=True) |
|
loss_dict['l_d_real'] = l_d_real |
|
|
|
l_d_fake = self.cri_gan(pred_fake, False, is_disc=True) |
|
loss_dict['l_d_fake'] = l_d_fake |
|
|
|
l_d_total = (l_d_real + l_d_fake) / 2 |
|
l_d_total.backward() |
|
self.optimizer_d.step() |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
if self.ema_decay > 0: |
|
print('HiFaceGAN does not support EMA now. pass') |
|
|
|
def validation(self, dataloader, current_iter, tb_logger, save_img=False): |
|
""" |
|
Warning: HiFaceGAN requires train() mode even for validation |
|
For more info, see https://github.com/Lotayou/Face-Renovation/issues/31 |
|
|
|
Args: |
|
dataloader (torch.utils.data.DataLoader): Validation dataloader. |
|
current_iter (int): Current iteration. |
|
tb_logger (tensorboard logger): Tensorboard logger. |
|
save_img (bool): Whether to save images. Default: False. |
|
""" |
|
|
|
if self.opt['network_g']['type'] in ('HiFaceGAN', 'SPADEGenerator'): |
|
self.net_g.train() |
|
|
|
if self.opt['dist']: |
|
self.dist_validation(dataloader, current_iter, tb_logger, save_img) |
|
else: |
|
print('In HiFaceGANModel: The new metrics package is under development.' + |
|
'Using super method now (Only PSNR & SSIM are supported)') |
|
super().nondist_validation(dataloader, current_iter, tb_logger, save_img) |
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
""" |
|
TODO: Validation using updated metric system |
|
The metrics are now evaluated after all images have been tested |
|
This allows batch processing, and also allows evaluation of |
|
distributional metrics, such as: |
|
|
|
@ Frechet Inception Distance: FID |
|
@ Maximum Mean Discrepancy: MMD |
|
|
|
Warning: |
|
Need careful batch management for different inference settings. |
|
|
|
""" |
|
dataset_name = dataloader.dataset.opt['name'] |
|
with_metrics = self.opt['val'].get('metrics') is not None |
|
if with_metrics: |
|
self.metric_results = dict() |
|
sr_tensors = [] |
|
gt_tensors = [] |
|
|
|
pbar = tqdm(total=len(dataloader), unit='image') |
|
for val_data in dataloader: |
|
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] |
|
self.feed_data(val_data) |
|
self.test() |
|
|
|
visuals = self.get_current_visuals() |
|
sr_tensors.append(visuals['result']) |
|
if 'gt' in visuals: |
|
gt_tensors.append(visuals['gt']) |
|
del self.gt |
|
|
|
|
|
del self.lq |
|
del self.output |
|
torch.cuda.empty_cache() |
|
|
|
if save_img: |
|
if self.opt['is_train']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], img_name, |
|
f'{img_name}_{current_iter}.png') |
|
else: |
|
if self.opt['val']['suffix']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["val"]["suffix"]}.png') |
|
else: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["name"]}.png') |
|
|
|
imwrite(tensor2img(visuals['result']), save_img_path) |
|
|
|
pbar.update(1) |
|
pbar.set_description(f'Test {img_name}') |
|
pbar.close() |
|
|
|
if with_metrics: |
|
sr_pack = torch.cat(sr_tensors, dim=0) |
|
gt_pack = torch.cat(gt_tensors, dim=0) |
|
|
|
for name, opt_ in self.opt['val']['metrics'].items(): |
|
|
|
|
|
self.metric_results[name] = calculate_metric(dict(sr_pack=sr_pack, gt_pack=gt_pack), opt_) |
|
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) |
|
|
|
def save(self, epoch, current_iter): |
|
if hasattr(self, 'net_g_ema'): |
|
print('HiFaceGAN does not support EMA now. Fallback to normal mode.') |
|
|
|
self.save_network(self.net_g, 'net_g', current_iter) |
|
self.save_network(self.net_d, 'net_d', current_iter) |
|
self.save_training_state(epoch, current_iter) |
|
|