|
import torch |
|
from collections import OrderedDict |
|
|
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
from .srgan_model import SRGANModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class ESRGANModel(SRGANModel): |
|
"""ESRGAN model for single image super-resolution.""" |
|
|
|
def optimize_parameters(self, current_iter): |
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
|
|
self.optimizer_g.zero_grad() |
|
self.output = self.net_g(self.lq) |
|
|
|
l_g_total = 0 |
|
loss_dict = OrderedDict() |
|
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): |
|
|
|
if self.cri_pix: |
|
l_g_pix = self.cri_pix(self.output, self.gt) |
|
l_g_total += l_g_pix |
|
loss_dict['l_g_pix'] = l_g_pix |
|
|
|
if self.cri_perceptual: |
|
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) |
|
if l_g_percep is not None: |
|
l_g_total += l_g_percep |
|
loss_dict['l_g_percep'] = l_g_percep |
|
if l_g_style is not None: |
|
l_g_total += l_g_style |
|
loss_dict['l_g_style'] = l_g_style |
|
|
|
real_d_pred = self.net_d(self.gt).detach() |
|
fake_g_pred = self.net_d(self.output) |
|
l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False) |
|
l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False) |
|
l_g_gan = (l_g_real + l_g_fake) / 2 |
|
|
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan'] = l_g_gan |
|
|
|
l_g_total.backward() |
|
self.optimizer_g.step() |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
|
|
self.optimizer_d.zero_grad() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fake_d_pred = self.net_d(self.output).detach() |
|
real_d_pred = self.net_d(self.gt) |
|
l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5 |
|
l_d_real.backward() |
|
|
|
fake_d_pred = self.net_d(self.output.detach()) |
|
l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5 |
|
l_d_fake.backward() |
|
self.optimizer_d.step() |
|
|
|
loss_dict['l_d_real'] = l_d_real |
|
loss_dict['l_d_fake'] = l_d_fake |
|
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) |
|
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
if self.ema_decay > 0: |
|
self.model_ema(decay=self.ema_decay) |
|
|