Spaces:
Running
on
T4
Running
on
T4
Mark Duppenthaler
commited on
Commit
•
1727d3b
1
Parent(s):
a7361bc
work with m4t model
Browse files- app.py +125 -57
- m4t_app.py +463 -0
app.py
CHANGED
@@ -11,73 +11,141 @@ from seamless_communication.models.inference.translator import Translator
|
|
11 |
|
12 |
from m4t_app import *
|
13 |
|
14 |
-
from transformers import pipeline
|
15 |
-
|
16 |
-
p = pipeline("automatic-speech-recognition")
|
17 |
-
|
18 |
from pydub import AudioSegment
|
19 |
import time
|
20 |
from time import sleep
|
21 |
|
22 |
-
m4t_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
def transcribe(audio, state=""):
|
25 |
-
# sleep(2)
|
26 |
-
print('state', state)
|
27 |
-
text = p(audio)["text"]
|
28 |
-
state += text + " "
|
29 |
-
return state
|
30 |
|
31 |
def blocks():
|
32 |
with gr.Blocks() as demo:
|
33 |
-
|
34 |
-
|
35 |
|
36 |
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
demo.queue().launch()
|
83 |
|
|
|
11 |
|
12 |
from m4t_app import *
|
13 |
|
|
|
|
|
|
|
|
|
14 |
from pydub import AudioSegment
|
15 |
import time
|
16 |
from time import sleep
|
17 |
|
18 |
+
# m4t_demo()
|
19 |
+
|
20 |
+
USE_M4T = True
|
21 |
+
|
22 |
+
|
23 |
+
def translate_audio_file_segment(audio_file):
|
24 |
+
print("translate_m4t state")
|
25 |
+
|
26 |
+
return predict(
|
27 |
+
task_name="S2ST",
|
28 |
+
audio_source="microphone",
|
29 |
+
input_audio_mic=audio_file,
|
30 |
+
input_audio_file=None,
|
31 |
+
input_text="",
|
32 |
+
source_language="English",
|
33 |
+
target_language="Portuguese",
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def translate_m4t_callback(
|
38 |
+
audio_file, translated_audio_bytes_state, translated_text_state
|
39 |
+
):
|
40 |
+
translated_wav_segment, translated_text = translate_audio_file_segment(audio_file)
|
41 |
+
print('translated_audio_bytes_state', translated_audio_bytes_state)
|
42 |
+
print('translated_wav_segment', translated_wav_segment)
|
43 |
+
|
44 |
+
# combine translated wav into larger..
|
45 |
+
if type(translated_audio_bytes_state) is not tuple:
|
46 |
+
translated_audio_bytes_state = translated_wav_segment
|
47 |
+
else:
|
48 |
+
|
49 |
+
translated_audio_bytes_state = (translated_audio_bytes_state[0], np.append(translated_audio_bytes_state[1], translated_wav_segment[1]))
|
50 |
+
|
51 |
+
# translated_wav_segment[1]
|
52 |
+
|
53 |
+
|
54 |
+
translated_text_state += " | " + str(translated_text)
|
55 |
+
return [
|
56 |
+
audio_file,
|
57 |
+
translated_wav_segment,
|
58 |
+
translated_audio_bytes_state,
|
59 |
+
translated_text_state,
|
60 |
+
translated_audio_bytes_state,
|
61 |
+
translated_text_state,
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
def clear():
|
66 |
+
print("Clearing State")
|
67 |
+
return [bytes(), ""]
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def blocks():
|
71 |
with gr.Blocks() as demo:
|
72 |
+
translated_audio_bytes_state = gr.State(None)
|
73 |
+
translated_text_state = gr.State("")
|
74 |
|
75 |
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
76 |
+
if USE_M4T:
|
77 |
+
input_audio = gr.Audio(
|
78 |
+
label="Input Audio",
|
79 |
+
type="filepath",
|
80 |
+
source="microphone",
|
81 |
+
streaming=True,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
input_audio = gr.Audio(
|
85 |
+
label="Input Audio",
|
86 |
+
type="filepath",
|
87 |
+
format="mp3",
|
88 |
+
source="microphone",
|
89 |
+
streaming=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
most_recent_input_audio_segment = gr.Audio(
|
93 |
+
label="Recent Input Audio Segment segments", format="bytes", streaming=True
|
94 |
+
)
|
95 |
+
# TODO: Should add combined input audio segments...
|
96 |
+
|
97 |
+
stream_as_bytes_btn = gr.Button("Translate most recent recording segment")
|
98 |
+
|
99 |
+
output_translation_segment = gr.Audio(
|
100 |
+
label="Translated audio segment",
|
101 |
+
autoplay=False,
|
102 |
+
streaming=True,
|
103 |
+
type="numpy",
|
104 |
+
)
|
105 |
+
|
106 |
+
output_translation_combined = gr.Audio(
|
107 |
+
label="Translated audio combined",
|
108 |
+
autoplay=False,
|
109 |
+
streaming=True,
|
110 |
+
type="numpy",
|
111 |
+
)
|
112 |
+
|
113 |
+
# Could add output text segment
|
114 |
+
stream_output_text = gr.Textbox(label="Translated text")
|
115 |
+
|
116 |
+
stream_as_bytes_btn.click(
|
117 |
+
translate_m4t_callback,
|
118 |
+
[input_audio, translated_audio_bytes_state, translated_text_state],
|
119 |
+
[
|
120 |
+
most_recent_input_audio_segment,
|
121 |
+
output_translation_segment,
|
122 |
+
output_translation_combined,
|
123 |
+
stream_output_text,
|
124 |
+
translated_audio_bytes_state,
|
125 |
+
translated_text_state,
|
126 |
+
],
|
127 |
+
)
|
128 |
+
|
129 |
+
input_audio.change(
|
130 |
+
translate_m4t_callback,
|
131 |
+
[input_audio, translated_audio_bytes_state, translated_text_state],
|
132 |
+
[
|
133 |
+
most_recent_input_audio_segment,
|
134 |
+
output_translation_segment,
|
135 |
+
output_translation_combined,
|
136 |
+
stream_output_text,
|
137 |
+
translated_audio_bytes_state,
|
138 |
+
translated_text_state,
|
139 |
+
],
|
140 |
+
)
|
141 |
+
# input_audio.change(stream_bytes, [input_audio, translated_audio_bytes_state, translated_text_state], [most_recent_input_audio_segment, stream_output_text, translated_audio_bytes_state, translated_text_state])
|
142 |
+
# input_audio.change(lambda input_audio: recorded_audio, [input_audio], [recorded_audio])
|
143 |
+
input_audio.clear(
|
144 |
+
clear, None, [translated_audio_bytes_state, translated_text_state]
|
145 |
+
)
|
146 |
+
input_audio.start_recording(
|
147 |
+
clear, None, [translated_audio_bytes_state, translated_text_state]
|
148 |
+
)
|
149 |
|
150 |
demo.queue().launch()
|
151 |
|
m4t_app.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchaudio
|
9 |
+
from seamless_communication.models.inference.translator import Translator
|
10 |
+
|
11 |
+
from lang_list import (
|
12 |
+
LANGUAGE_NAME_TO_CODE,
|
13 |
+
S2ST_TARGET_LANGUAGE_NAMES,
|
14 |
+
S2TT_TARGET_LANGUAGE_NAMES,
|
15 |
+
T2TT_TARGET_LANGUAGE_NAMES,
|
16 |
+
TEXT_SOURCE_LANGUAGE_NAMES,
|
17 |
+
)
|
18 |
+
|
19 |
+
DESCRIPTION = """# SeamlessM4T
|
20 |
+
|
21 |
+
# mduppes aaaaaa
|
22 |
+
|
23 |
+
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
24 |
+
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
25 |
+
|
26 |
+
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
27 |
+
translation and more, without relying on multiple separate models.
|
28 |
+
"""
|
29 |
+
|
30 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
31 |
+
|
32 |
+
TASK_NAMES = [
|
33 |
+
"S2ST (Speech to Speech translation)",
|
34 |
+
"S2TT (Speech to Text translation)",
|
35 |
+
"T2ST (Text to Speech translation)",
|
36 |
+
"T2TT (Text to Text translation)",
|
37 |
+
"ASR (Automatic Speech Recognition)",
|
38 |
+
]
|
39 |
+
AUDIO_SAMPLE_RATE = 16000.0
|
40 |
+
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
41 |
+
DEFAULT_TARGET_LANGUAGE = "French"
|
42 |
+
|
43 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
44 |
+
print("DEVICE", device)
|
45 |
+
translator = Translator(
|
46 |
+
model_name_or_card="seamlessM4T_medium",
|
47 |
+
vocoder_name_or_card="vocoder_36langs",
|
48 |
+
device=device,
|
49 |
+
# dtype=torch.float16,
|
50 |
+
# For CPU Mode need to use 32, float16 causes errors downstream
|
51 |
+
dtype=torch.float32,
|
52 |
+
)
|
53 |
+
|
54 |
+
def get_translator():
|
55 |
+
return translator
|
56 |
+
|
57 |
+
|
58 |
+
def transcribe(audio):
|
59 |
+
print(audio)
|
60 |
+
text = p(audio)["text"]
|
61 |
+
return text
|
62 |
+
|
63 |
+
def transcribe_state(audio, state = ""):
|
64 |
+
print(audio)
|
65 |
+
text = p(audio)["text"]
|
66 |
+
state += text + " "
|
67 |
+
return state, state
|
68 |
+
|
69 |
+
|
70 |
+
def predict(
|
71 |
+
task_name: str,
|
72 |
+
audio_source: str,
|
73 |
+
input_audio_mic: str | None,
|
74 |
+
input_audio_file: str | None,
|
75 |
+
input_text: str | None,
|
76 |
+
source_language: str | None,
|
77 |
+
target_language: str,
|
78 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
79 |
+
task_name = task_name.split()[0]
|
80 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
81 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
82 |
+
|
83 |
+
if task_name in ["S2ST", "S2TT", "ASR"]:
|
84 |
+
if audio_source == "microphone":
|
85 |
+
input_data = input_audio_mic
|
86 |
+
else:
|
87 |
+
input_data = input_audio_file
|
88 |
+
|
89 |
+
arr, org_sr = torchaudio.load(input_data)
|
90 |
+
print(task_name, audio_source, input_audio_mic, type(input_audio_file), type(input_text), source_language, target_language)
|
91 |
+
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
92 |
+
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
93 |
+
if new_arr.shape[1] > max_length:
|
94 |
+
new_arr = new_arr[:, :max_length]
|
95 |
+
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
96 |
+
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
97 |
+
else:
|
98 |
+
input_data = input_text
|
99 |
+
text_out, wav, sr = translator.predict(
|
100 |
+
input=input_data,
|
101 |
+
task_str=task_name,
|
102 |
+
tgt_lang=target_language_code,
|
103 |
+
src_lang=source_language_code,
|
104 |
+
ngram_filtering=True,
|
105 |
+
sample_rate=AUDIO_SAMPLE_RATE,
|
106 |
+
)
|
107 |
+
print("translation response", text_out, wav, sr)
|
108 |
+
# text_out = "Testing"
|
109 |
+
# return None, text_out
|
110 |
+
if task_name in ["S2ST", "T2ST"]:
|
111 |
+
return (sr, wav.cpu().detach().numpy()), text_out
|
112 |
+
else:
|
113 |
+
return None, text_out
|
114 |
+
|
115 |
+
|
116 |
+
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
117 |
+
return predict(
|
118 |
+
task_name="S2ST",
|
119 |
+
audio_source="file",
|
120 |
+
input_audio_mic=None,
|
121 |
+
input_audio_file=input_audio_file,
|
122 |
+
input_text=None,
|
123 |
+
source_language=None,
|
124 |
+
target_language=target_language,
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
129 |
+
return predict(
|
130 |
+
task_name="S2TT",
|
131 |
+
audio_source="file",
|
132 |
+
input_audio_mic=None,
|
133 |
+
input_audio_file=input_audio_file,
|
134 |
+
input_text=None,
|
135 |
+
source_language=None,
|
136 |
+
target_language=target_language,
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def process_t2st_example(
|
141 |
+
input_text: str, source_language: str, target_language: str
|
142 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
143 |
+
return predict(
|
144 |
+
task_name="T2ST",
|
145 |
+
audio_source="",
|
146 |
+
input_audio_mic=None,
|
147 |
+
input_audio_file=None,
|
148 |
+
input_text=input_text,
|
149 |
+
source_language=source_language,
|
150 |
+
target_language=target_language,
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
def process_t2tt_example(
|
155 |
+
input_text: str, source_language: str, target_language: str
|
156 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
157 |
+
return predict(
|
158 |
+
task_name="T2TT",
|
159 |
+
audio_source="",
|
160 |
+
input_audio_mic=None,
|
161 |
+
input_audio_file=None,
|
162 |
+
input_text=input_text,
|
163 |
+
source_language=source_language,
|
164 |
+
target_language=target_language,
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
169 |
+
return predict(
|
170 |
+
task_name="ASR",
|
171 |
+
audio_source="file",
|
172 |
+
input_audio_mic=None,
|
173 |
+
input_audio_file=input_audio_file,
|
174 |
+
input_text=None,
|
175 |
+
source_language=None,
|
176 |
+
target_language=target_language,
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
181 |
+
mic = audio_source == "microphone"
|
182 |
+
return (
|
183 |
+
gr.update(visible=mic, value=None), # input_audio_mic
|
184 |
+
gr.update(visible=not mic, value=None), # input_audio_file
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
189 |
+
task_name = task_name.split()[0]
|
190 |
+
if task_name == "S2ST":
|
191 |
+
return (
|
192 |
+
gr.update(visible=True), # audio_box
|
193 |
+
gr.update(visible=False), # input_text
|
194 |
+
gr.update(visible=False), # source_language
|
195 |
+
gr.update(
|
196 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
197 |
+
), # target_language
|
198 |
+
)
|
199 |
+
elif task_name == "S2TT":
|
200 |
+
return (
|
201 |
+
gr.update(visible=True), # audio_box
|
202 |
+
gr.update(visible=False), # input_text
|
203 |
+
gr.update(visible=False), # source_language
|
204 |
+
gr.update(
|
205 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
206 |
+
), # target_language
|
207 |
+
)
|
208 |
+
elif task_name == "T2ST":
|
209 |
+
return (
|
210 |
+
gr.update(visible=False), # audio_box
|
211 |
+
gr.update(visible=True), # input_text
|
212 |
+
gr.update(visible=True), # source_language
|
213 |
+
gr.update(
|
214 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
215 |
+
), # target_language
|
216 |
+
)
|
217 |
+
elif task_name == "T2TT":
|
218 |
+
return (
|
219 |
+
gr.update(visible=False), # audio_box
|
220 |
+
gr.update(visible=True), # input_text
|
221 |
+
gr.update(visible=True), # source_language
|
222 |
+
gr.update(
|
223 |
+
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
224 |
+
), # target_language
|
225 |
+
)
|
226 |
+
elif task_name == "ASR":
|
227 |
+
return (
|
228 |
+
gr.update(visible=True), # audio_box
|
229 |
+
gr.update(visible=False), # input_text
|
230 |
+
gr.update(visible=False), # source_language
|
231 |
+
gr.update(
|
232 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
233 |
+
), # target_language
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
raise ValueError(f"Unknown task: {task_name}")
|
237 |
+
|
238 |
+
|
239 |
+
def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
240 |
+
task_name = task_name.split()[0]
|
241 |
+
if task_name in ["S2ST", "T2ST"]:
|
242 |
+
return (
|
243 |
+
gr.update(visible=True, value=None), # output_audio
|
244 |
+
gr.update(value=None), # output_text
|
245 |
+
)
|
246 |
+
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
247 |
+
return (
|
248 |
+
gr.update(visible=False, value=None), # output_audio
|
249 |
+
gr.update(value=None), # output_text
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
raise ValueError(f"Unknown task: {task_name}")
|
253 |
+
|
254 |
+
|
255 |
+
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
256 |
+
task_name = task_name.split()[0]
|
257 |
+
return (
|
258 |
+
gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
259 |
+
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
260 |
+
gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
261 |
+
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
262 |
+
gr.update(visible=task_name == "ASR"), # asr_example_row
|
263 |
+
)
|
264 |
+
|
265 |
+
def m4t_demo():
|
266 |
+
|
267 |
+
with gr.Blocks(css="style.css") as demo:
|
268 |
+
gr.Markdown(DESCRIPTION)
|
269 |
+
gr.DuplicateButton(
|
270 |
+
value="Duplicate Space for private use",
|
271 |
+
elem_id="duplicate-button",
|
272 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
273 |
+
)
|
274 |
+
|
275 |
+
with gr.Group():
|
276 |
+
task_name = gr.Dropdown(
|
277 |
+
label="Task",
|
278 |
+
choices=TASK_NAMES,
|
279 |
+
value=TASK_NAMES[0],
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
with gr.Row():
|
284 |
+
source_language = gr.Dropdown(
|
285 |
+
label="Source language",
|
286 |
+
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
287 |
+
value="English",
|
288 |
+
visible=False,
|
289 |
+
)
|
290 |
+
target_language = gr.Dropdown(
|
291 |
+
label="Target language",
|
292 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
293 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
294 |
+
)
|
295 |
+
with gr.Row() as audio_box:
|
296 |
+
audio_source = gr.Radio(
|
297 |
+
label="Audio source",
|
298 |
+
choices=["file", "microphone"],
|
299 |
+
value="file",
|
300 |
+
)
|
301 |
+
input_audio_mic = gr.Audio(
|
302 |
+
label="Input speech",
|
303 |
+
type="filepath",
|
304 |
+
source="microphone",
|
305 |
+
visible=False,
|
306 |
+
)
|
307 |
+
input_audio_file = gr.Audio(
|
308 |
+
label="Input speech",
|
309 |
+
type="filepath",
|
310 |
+
source="upload",
|
311 |
+
visible=True,
|
312 |
+
)
|
313 |
+
input_text = gr.Textbox(label="Input text", visible=False)
|
314 |
+
btn = gr.Button("Translate")
|
315 |
+
with gr.Column():
|
316 |
+
output_audio = gr.Audio(
|
317 |
+
label="Translated speech",
|
318 |
+
autoplay=False,
|
319 |
+
streaming=False,
|
320 |
+
type="numpy",
|
321 |
+
)
|
322 |
+
output_text = gr.Textbox(label="Translated text")
|
323 |
+
|
324 |
+
with gr.Row(visible=True) as s2st_example_row:
|
325 |
+
s2st_examples = gr.Examples(
|
326 |
+
examples=[
|
327 |
+
["assets/sample_input.mp3", "French"],
|
328 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
329 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
330 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
331 |
+
],
|
332 |
+
inputs=[input_audio_file, target_language],
|
333 |
+
outputs=[output_audio, output_text],
|
334 |
+
fn=process_s2st_example,
|
335 |
+
cache_examples=CACHE_EXAMPLES,
|
336 |
+
)
|
337 |
+
with gr.Row(visible=False) as s2tt_example_row:
|
338 |
+
s2tt_examples = gr.Examples(
|
339 |
+
examples=[
|
340 |
+
["assets/sample_input.mp3", "French"],
|
341 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
342 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
343 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
344 |
+
],
|
345 |
+
inputs=[input_audio_file, target_language],
|
346 |
+
outputs=[output_audio, output_text],
|
347 |
+
fn=process_s2tt_example,
|
348 |
+
cache_examples=CACHE_EXAMPLES,
|
349 |
+
)
|
350 |
+
with gr.Row(visible=False) as t2st_example_row:
|
351 |
+
t2st_examples = gr.Examples(
|
352 |
+
examples=[
|
353 |
+
["My favorite animal is the elephant.", "English", "French"],
|
354 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
355 |
+
[
|
356 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
357 |
+
"English",
|
358 |
+
"Hindi",
|
359 |
+
],
|
360 |
+
[
|
361 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
362 |
+
"English",
|
363 |
+
"Spanish",
|
364 |
+
],
|
365 |
+
],
|
366 |
+
inputs=[input_text, source_language, target_language],
|
367 |
+
outputs=[output_audio, output_text],
|
368 |
+
fn=process_t2st_example,
|
369 |
+
cache_examples=CACHE_EXAMPLES,
|
370 |
+
)
|
371 |
+
with gr.Row(visible=False) as t2tt_example_row:
|
372 |
+
t2tt_examples = gr.Examples(
|
373 |
+
examples=[
|
374 |
+
["My favorite animal is the elephant.", "English", "French"],
|
375 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
376 |
+
[
|
377 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
378 |
+
"English",
|
379 |
+
"Hindi",
|
380 |
+
],
|
381 |
+
[
|
382 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
383 |
+
"English",
|
384 |
+
"Spanish",
|
385 |
+
],
|
386 |
+
],
|
387 |
+
inputs=[input_text, source_language, target_language],
|
388 |
+
outputs=[output_audio, output_text],
|
389 |
+
fn=process_t2tt_example,
|
390 |
+
cache_examples=CACHE_EXAMPLES,
|
391 |
+
)
|
392 |
+
with gr.Row(visible=False) as asr_example_row:
|
393 |
+
asr_examples = gr.Examples(
|
394 |
+
examples=[
|
395 |
+
["assets/sample_input.mp3", "English"],
|
396 |
+
["assets/sample_input_2.mp3", "English"],
|
397 |
+
],
|
398 |
+
inputs=[input_audio_file, target_language],
|
399 |
+
outputs=[output_audio, output_text],
|
400 |
+
fn=process_asr_example,
|
401 |
+
cache_examples=CACHE_EXAMPLES,
|
402 |
+
)
|
403 |
+
|
404 |
+
audio_source.change(
|
405 |
+
fn=update_audio_ui,
|
406 |
+
inputs=audio_source,
|
407 |
+
outputs=[
|
408 |
+
input_audio_mic,
|
409 |
+
input_audio_file,
|
410 |
+
],
|
411 |
+
queue=False,
|
412 |
+
api_name=False,
|
413 |
+
)
|
414 |
+
task_name.change(
|
415 |
+
fn=update_input_ui,
|
416 |
+
inputs=task_name,
|
417 |
+
outputs=[
|
418 |
+
audio_box,
|
419 |
+
input_text,
|
420 |
+
source_language,
|
421 |
+
target_language,
|
422 |
+
],
|
423 |
+
queue=False,
|
424 |
+
api_name=False,
|
425 |
+
).then(
|
426 |
+
fn=update_output_ui,
|
427 |
+
inputs=task_name,
|
428 |
+
outputs=[output_audio, output_text],
|
429 |
+
queue=False,
|
430 |
+
api_name=False,
|
431 |
+
).then(
|
432 |
+
fn=update_example_ui,
|
433 |
+
inputs=task_name,
|
434 |
+
outputs=[
|
435 |
+
s2st_example_row,
|
436 |
+
s2tt_example_row,
|
437 |
+
t2st_example_row,
|
438 |
+
t2tt_example_row,
|
439 |
+
asr_example_row,
|
440 |
+
],
|
441 |
+
queue=False,
|
442 |
+
api_name=False,
|
443 |
+
)
|
444 |
+
|
445 |
+
btn.click(
|
446 |
+
fn=predict,
|
447 |
+
inputs=[
|
448 |
+
task_name,
|
449 |
+
audio_source,
|
450 |
+
input_audio_mic,
|
451 |
+
input_audio_file,
|
452 |
+
input_text,
|
453 |
+
source_language,
|
454 |
+
target_language,
|
455 |
+
],
|
456 |
+
outputs=[output_audio, output_text],
|
457 |
+
api_name="run",
|
458 |
+
)
|
459 |
+
demo.queue(max_size=50).launch()
|
460 |
+
|
461 |
+
# Linking models to the space
|
462 |
+
# 'facebook/seamless-m4t-large'
|
463 |
+
# 'facebook/SONAR'
|