StyleNeRF / metrics /metric_main.py
Jiatao Gu
add code from the original repo
94ada0b
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import json
import torch
import dnnlib
from . import metric_utils
from . import frechet_inception_distance
from . import kernel_inception_distance
from . import precision_recall
from . import perceptual_path_length
from . import inception_score
#----------------------------------------------------------------------------
_metric_dict = dict() # name => fn
def register_metric(fn):
assert callable(fn)
_metric_dict[fn.__name__] = fn
return fn
def is_valid_metric(metric):
return metric in _metric_dict
def list_valid_metrics():
return list(_metric_dict.keys())
#----------------------------------------------------------------------------
def calc_metric(metric, **kwargs): # See metric_utils.MetricOptions for the full list of arguments.
assert is_valid_metric(metric)
opts = metric_utils.MetricOptions(**kwargs)
# Calculate.
start_time = time.time()
results = _metric_dict[metric](opts)
total_time = time.time() - start_time
# Broadcast results.
for key, value in list(results.items()):
if opts.num_gpus > 1:
value = torch.as_tensor(value, dtype=torch.float64, device=opts.device)
torch.distributed.broadcast(tensor=value, src=0)
value = float(value.cpu())
results[key] = value
# Decorate with metadata.
return dnnlib.EasyDict(
results = dnnlib.EasyDict(results),
metric = metric,
total_time = total_time,
total_time_str = dnnlib.util.format_time(total_time),
num_gpus = opts.num_gpus,
)
#----------------------------------------------------------------------------
def report_metric(result_dict, run_dir=None, snapshot_pkl=None):
metric = result_dict['metric']
assert is_valid_metric(metric)
if run_dir is not None and snapshot_pkl is not None:
snapshot_pkl = os.path.relpath(snapshot_pkl, run_dir)
jsonl_line = json.dumps(dict(result_dict, snapshot_pkl=snapshot_pkl, timestamp=time.time()))
print(jsonl_line)
if run_dir is not None and os.path.isdir(run_dir):
with open(os.path.join(run_dir, f'metric-{metric}.jsonl'), 'at') as f:
f.write(jsonl_line + '\n')
#----------------------------------------------------------------------------
# Primary metrics.
@register_metric
def fid50k_full(opts):
opts.dataset_kwargs.update(max_size=None, xflip=False)
fid = frechet_inception_distance.compute_fid(opts, max_real=None, num_gen=50000)
return dict(fid50k_full=fid)
@register_metric
def kid50k_full(opts):
opts.dataset_kwargs.update(max_size=None, xflip=False)
kid = kernel_inception_distance.compute_kid(opts, max_real=1000000, num_gen=50000, num_subsets=100, max_subset_size=1000)
return dict(kid50k_full=kid)
@register_metric
def pr50k3_full(opts):
opts.dataset_kwargs.update(max_size=None, xflip=False)
precision, recall = precision_recall.compute_pr(opts, max_real=200000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
return dict(pr50k3_full_precision=precision, pr50k3_full_recall=recall)
@register_metric
def ppl2_wend(opts):
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, batch_size=2)
return dict(ppl2_wend=ppl)
@register_metric
def is50k(opts):
opts.dataset_kwargs.update(max_size=None, xflip=False)
mean, std = inception_score.compute_is(opts, num_gen=50000, num_splits=10)
return dict(is50k_mean=mean, is50k_std=std)
#----------------------------------------------------------------------------
# Legacy metrics.
@register_metric
def fid50k(opts):
opts.dataset_kwargs.update(max_size=None)
fid = frechet_inception_distance.compute_fid(opts, max_real=50000, num_gen=50000)
return dict(fid50k=fid)
@register_metric
def kid50k(opts):
opts.dataset_kwargs.update(max_size=None)
kid = kernel_inception_distance.compute_kid(opts, max_real=50000, num_gen=50000, num_subsets=100, max_subset_size=1000)
return dict(kid50k=kid)
@register_metric
def pr50k3(opts):
opts.dataset_kwargs.update(max_size=None)
precision, recall = precision_recall.compute_pr(opts, max_real=50000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
return dict(pr50k3_precision=precision, pr50k3_recall=recall)
@register_metric
def ppl_zfull(opts):
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='z', sampling='full', crop=True, batch_size=2)
return dict(ppl_zfull=ppl)
@register_metric
def ppl_wfull(opts):
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='full', crop=True, batch_size=2)
return dict(ppl_wfull=ppl)
@register_metric
def ppl_zend(opts):
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='z', sampling='end', crop=True, batch_size=2)
return dict(ppl_zend=ppl)
@register_metric
def ppl_wend(opts):
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=True, batch_size=2)
return dict(ppl_wend=ppl)
#----------------------------------------------------------------------------