File size: 6,869 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import logging
import os
import pickle
import random
import socket
import struct
import subprocess
import warnings
import tempfile
import uuid


from datetime import date
from pathlib import Path
from collections import OrderedDict
from typing import Any, Dict, Mapping

import torch
import torch.distributed as dist


logger = logging.getLogger(__name__)


def is_master(args):
    return args.distributed_rank == 0


def init_distributed_mode(rank, args):
    if "WORLD_SIZE" in os.environ:
        args.world_size = int(os.environ["WORLD_SIZE"])
    
    if args.launcher == 'spawn':  # single node with multiprocessing.spawn
        args.world_size = args.num_gpus
        args.rank = rank
        args.gpu = rank
    
    elif 'RANK' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.gpu = int(os.environ['LOCAL_RANK'])
    
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    
    if args.world_size == 1:
        return

    if 'MASTER_ADDR' in os.environ:
        args.dist_url = 'tcp://{}:{}'.format(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])

    print(f'gpu={args.gpu}, rank={args.rank}, world_size={args.world_size}')
    args.distributed = True
    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
    
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()


def gather_list_and_concat(tensor):
    gather_t = [torch.ones_like(tensor) for _ in range(dist.get_world_size())]
    dist.all_gather(gather_t, tensor)
    return torch.cat(gather_t)


def get_rank():
    return dist.get_rank()


def get_world_size():
    return dist.get_world_size()


def get_default_group():
    return dist.group.WORLD


def all_gather_list(data, group=None, max_size=16384):
    """Gathers arbitrary data from all nodes into a list.

    Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python
    data. Note that *data* must be picklable.

    Args:
        data (Any): data from the local worker to be gathered on other workers
        group (optional): group of the collective
        max_size (int, optional): maximum size of the data to be gathered
            across workers
    """
    rank = get_rank()
    world_size = get_world_size()

    buffer_size = max_size * world_size
    if not hasattr(all_gather_list, '_buffer') or \
            all_gather_list._buffer.numel() < buffer_size:
        all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size)
        all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory()
    buffer = all_gather_list._buffer
    buffer.zero_()
    cpu_buffer = all_gather_list._cpu_buffer

    data = data.cpu()
    enc = pickle.dumps(data)
    enc_size = len(enc)
    header_size = 4  # size of header that contains the length of the encoded data
    size = header_size + enc_size
    if size > max_size:
        raise ValueError('encoded data size ({}) exceeds max_size ({})'.format(size, max_size))

    header = struct.pack(">I", enc_size)
    cpu_buffer[:size] = torch.ByteTensor(list(header + enc))
    start = rank * max_size
    buffer[start:start + size].copy_(cpu_buffer[:size])

    all_reduce(buffer, group=group)

    buffer = buffer.cpu()
    try:
        result = []
        for i in range(world_size):
            out_buffer = buffer[i * max_size:(i + 1) * max_size]
            enc_size, = struct.unpack(">I", bytes(out_buffer[:header_size].tolist()))
            if enc_size > 0:
                result.append(pickle.loads(bytes(out_buffer[header_size:header_size + enc_size].tolist())))
        return result
    except pickle.UnpicklingError:
        raise Exception(
            'Unable to unpickle data from other workers. all_gather_list requires all '
            'workers to enter the function together, so this error usually indicates '
            'that the workers have fallen out of sync somehow. Workers can fall out of '
            'sync if one of them runs out of memory, or if there are other conditions '
            'in your training script that can cause one worker to finish an epoch '
            'while other workers are still iterating over their portions of the data. '
            'Try rerunning with --ddp-backend=no_c10d and see if that helps.'
        )


def all_reduce_dict(
    data: Mapping[str, Any],
    device,
    group=None,
) -> Dict[str, Any]:
    """
    AllReduce a dictionary of values across workers. We separately
    reduce items that are already on the device and items on CPU for
    better performance.

    Args:
        data (Mapping[str, Any]): dictionary of data to all-reduce, but
            cannot be a nested dictionary
        device (torch.device): device for the reduction
        group (optional): group of the collective
    """
    data_keys = list(data.keys())

    # We want to separately reduce items that are already on the
    # device and items on CPU for performance reasons.
    cpu_data = OrderedDict()
    device_data = OrderedDict()
    for k in data_keys:
        t = data[k]
        if not torch.is_tensor(t):
            cpu_data[k] = torch.tensor(t, dtype=torch.double)
        elif t.device.type != device.type:
            cpu_data[k] = t.to(dtype=torch.double)
        else:
            device_data[k] = t.to(dtype=torch.double)

    def _all_reduce_dict(data: OrderedDict):
        if len(data) == 0:
            return data
        buf = torch.stack(list(data.values())).to(device=device)
        all_reduce(buf, group=group)
        return {k: buf[i] for i, k in enumerate(data)}

    cpu_data = _all_reduce_dict(cpu_data)
    device_data = _all_reduce_dict(device_data)

    def get_from_stack(key):
        if key in cpu_data:
            return cpu_data[key]
        elif key in device_data:
            return device_data[key]
        raise KeyError

    return OrderedDict([(key, get_from_stack(key)) for key in data_keys])


def get_shared_folder() -> Path:
    user = os.getenv("USER")
    if Path("/checkpoint/").is_dir():
        p = Path(f"/checkpoint/{user}/experiments")
        p.mkdir(exist_ok=True)
        return p
    else:
        p = Path(f"/tmp/experiments")
        p.mkdir(exist_ok=True)
        return p


def get_init_file():
    # Init file must not exist, but it's parent dir must exist.
    os.makedirs(str(get_shared_folder()), exist_ok=True)
    init_file = Path(str(get_shared_folder()) + f"/{uuid.uuid4().hex}_init")
    if init_file.exists():
        os.remove(str(init_file))
    return init_file