import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import pipeline from transformers import VitsModel, AutoTokenizer #import torch device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint model = VitsModel.from_pretrained("facebook/mms-tts-spa") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa") def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"es"}) return outputs["text"] def synthesise(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): speech = model(**inputs).waveform return speech[0].cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return model.config.sampling_rate, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's [MMS TTS](https://huggingface.co/facebook/mms-tts-spa) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["upload"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()