import os import torch.cuda import wandb import argparse import pytorch_lightning as pl from termcolor import colored from pytorch_lightning.loggers import WandbLogger from transformers import BartForConditionalGeneration from idiomify.datamodules import IdiomifyDataModule from idiomify.fetchers import fetch_config, fetch_tokenizer from idiomify.models import Idiomifier from idiomify.paths import ROOT_DIR def main(): parser = argparse.ArgumentParser() parser.add_argument("--num_workers", type=int, default=os.cpu_count()) parser.add_argument("--log_every_n_steps", type=int, default=1) parser.add_argument("--fast_dev_run", action="store_true", default=False) parser.add_argument("--upload", dest='upload', action='store_true', default=False) args = parser.parse_args() config = fetch_config()['idiomifier'] config.update(vars(args)) if not config['upload']: print(colored("WARNING: YOU CHOSE NOT TO UPLOAD. NOTHING BUT LOGS WILL BE SAVED TO WANDB", color="red")) # prepare a pre-trained BART bart = BartForConditionalGeneration.from_pretrained(config['bart']) # prepare the datamodule with wandb.init(entity="eubinecto", project="idiomify", config=config) as run: tokenizer = fetch_tokenizer(config['tokenizer_ver'], run) bart.resize_token_embeddings(len(tokenizer)) # because new tokens are added, this process is necessary model = Idiomifier(bart, config['lr'], tokenizer.bos_token_id, tokenizer.pad_token_id) datamodule = IdiomifyDataModule(config, tokenizer, run) logger = WandbLogger(log_model=False) trainer = pl.Trainer(max_epochs=config['max_epochs'], fast_dev_run=config['fast_dev_run'], log_every_n_steps=config['log_every_n_steps'], gpus=torch.cuda.device_count(), default_root_dir=str(ROOT_DIR), enable_checkpointing=False, logger=logger) # start training trainer.fit(model=model, datamodule=datamodule) # upload the model to wandb only if the training is properly done # if not config['fast_dev_run'] and trainer.current_epoch == config['max_epochs'] - 1: ckpt_path = ROOT_DIR / "model.ckpt" trainer.save_checkpoint(str(ckpt_path)) config['vocab_size'] = len(tokenizer) # this will be needed to fetch a pretrained idiomifier later artifact = wandb.Artifact(name="idiomifier", type="model", metadata=config) artifact.add_file(str(ckpt_path)) run.log_artifact(artifact, aliases=["latest", config['ver']]) os.remove(str(ckpt_path)) # make sure you remove it after you are done with uploading it if __name__ == '__main__': main()