brush / model_patch.py
erikayurika's picture
Upload 94 files
c957591 verified
import torch
import comfy
# Check and add 'model_patch' to model.model_options['transformer_options']
def add_model_patch_option(model):
if 'transformer_options' not in model.model_options:
model.model_options['transformer_options'] = {}
to = model.model_options['transformer_options']
if "model_patch" not in to:
to["model_patch"] = {}
return to
# Patch model with model_function_wrapper
def patch_model_function_wrapper(model, forward_patch, remove=False):
def brushnet_model_function_wrapper(apply_model_method, options_dict):
to = options_dict['c']['transformer_options']
control = None
if 'control' in options_dict['c']:
control = options_dict['c']['control']
x = options_dict['input']
timestep = options_dict['timestep']
# check if there are patches to execute
if 'model_patch' not in to or 'forward' not in to['model_patch']:
return apply_model_method(x, timestep, **options_dict['c'])
mp = to['model_patch']
unet = mp['unet']
#print(model.get_model_object("model_sampling").sigmas, len(model.get_model_object("model_sampling").sigmas))
#print(mp['all_sigmas'], len(mp['all_sigmas']))
all_sigmas = mp['all_sigmas']
sigma = to['sigmas'][0].item()
total_steps = all_sigmas.shape[0] - 1
step = torch.argmin((all_sigmas - sigma).abs()).item()
mp['step'] = step
mp['total_steps'] = total_steps
# comfy.model_base.apply_model
xc = model.model.model_sampling.calculate_input(timestep, x)
if 'c_concat' in options_dict['c'] and options_dict['c']['c_concat'] is not None:
xc = torch.cat([xc] + [options_dict['c']['c_concat']], dim=1)
t = model.model.model_sampling.timestep(timestep).float()
# execute all patches
for method in mp['forward']:
method(unet, xc, t, to, control)
return apply_model_method(x, timestep, **options_dict['c'])
if "model_function_wrapper" in model.model_options and model.model_options["model_function_wrapper"]:
print('BrushNet is going to replace existing model_function_wrapper:', model.model_options["model_function_wrapper"])
model.set_model_unet_function_wrapper(brushnet_model_function_wrapper)
to = add_model_patch_option(model)
mp = to['model_patch']
if isinstance(model.model.model_config, comfy.supported_models.SD15):
mp['SDXL'] = False
elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
mp['SDXL'] = True
else:
print('Base model type: ', type(model.model.model_config))
raise Exception("Unsupported model type: ", type(model.model.model_config))
if 'forward' not in mp:
mp['forward'] = []
if remove:
if forward_patch in mp['forward']:
mp['forward'].remove(forward_patch)
else:
mp['forward'].append(forward_patch)
mp['unet'] = model.model.diffusion_model
mp['step'] = 0
mp['total_steps'] = 1
# apply patches to code
if comfy.samplers.sample.__doc__ is None or 'BrushNet' not in comfy.samplers.sample.__doc__:
comfy.samplers.original_sample = comfy.samplers.sample
comfy.samplers.sample = modified_sample
if comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__ is None or \
'BrushNet' not in comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__:
comfy.ldm.modules.diffusionmodules.openaimodel.original_apply_control = comfy.ldm.modules.diffusionmodules.openaimodel.apply_control
comfy.ldm.modules.diffusionmodules.openaimodel.apply_control = modified_apply_control
# Model needs current step number and cfg at inference step. It is possible to write a custom KSampler but I'd like to use ComfyUI's one.
# The first versions had modified_common_ksampler, but it broke custom KSampler nodes
def modified_sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={},
latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
'''
Modified by BrushNet nodes
'''
cfg_guider = comfy.samplers.CFGGuider(model)
cfg_guider.set_conds(positive, negative)
cfg_guider.set_cfg(cfg)
### Modified part ######################################################################
#
to = add_model_patch_option(model)
to['model_patch']['all_sigmas'] = sigmas
#
#sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
#sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
#
#
#if math.isclose(cfg, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
# to['model_patch']['free_guidance'] = False
#else:
# to['model_patch']['free_guidance'] = True
#
#######################################################################################
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
# To use Controlnet with RAUNet it is much easier to modify apply_control a little
def modified_apply_control(h, control, name):
'''
Modified by BrushNet nodes
'''
if control is not None and name in control and len(control[name]) > 0:
ctrl = control[name].pop()
if ctrl is not None:
if h.shape[2] != ctrl.shape[2] or h.shape[3] != ctrl.shape[3]:
ctrl = torch.nn.functional.interpolate(ctrl, size=(h.shape[2], h.shape[3]), mode='bicubic').to(h.dtype).to(h.device)
try:
h += ctrl
except:
print.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
return h