def NAME_TO_WIDTH(name): map = { 'mn04': 0.4, 'mn05': 0.5, 'mn10': 1.0, 'mn20': 2.0, 'mn30': 3.0, 'mn40': 4.0 } try: w = map[name[:4]] except: w = 1.0 return w import csv # Load label with open('efficientat/metadata/class_labels_indices.csv', 'r') as f: reader = csv.reader(f, delimiter=',') lines = list(reader) labels = [] ids = [] # Each label has a unique id such as "/m/068hy" for i1 in range(1, len(lines)): id = lines[i1][1] label = lines[i1][2] ids.append(id) labels.append(label) classes_num = len(labels) import numpy as np def exp_warmup_linear_down(warmup, rampdown_length, start_rampdown, last_value): rampup = exp_rampup(warmup) rampdown = linear_rampdown(rampdown_length, start_rampdown, last_value) def wrapper(epoch): return rampup(epoch) * rampdown(epoch) return wrapper def exp_rampup(rampup_length): """Exponential rampup from https://arxiv.org/abs/1610.02242""" def wrapper(epoch): if epoch < rampup_length: epoch = np.clip(epoch, 0.5, rampup_length) phase = 1.0 - epoch / rampup_length return float(np.exp(-5.0 * phase * phase)) else: return 1.0 return wrapper def linear_rampdown(rampdown_length, start=0, last_value=0): def wrapper(epoch): if epoch <= start: return 1. elif epoch - start < rampdown_length: return last_value + (1. - last_value) * (rampdown_length - epoch + start) / rampdown_length else: return last_value return wrapper import torch def mixup(size, alpha): rn_indices = torch.randperm(size) lambd = np.random.beta(alpha, alpha, size).astype(np.float32) lambd = np.concatenate([lambd[:, None], 1 - lambd[:, None]], 1).max(1) lam = torch.FloatTensor(lambd) return rn_indices, lam from torch.distributions.beta import Beta def mixstyle(x, p=0.4, alpha=0.4, eps=1e-6, mix_labels=False): if np.random.rand() > p: return x batch_size = x.size(0) # changed from dim=[2,3] to dim=[1,3] - from channel-wise statistics to frequency-wise statistics f_mu = x.mean(dim=[1, 3], keepdim=True) f_var = x.var(dim=[1, 3], keepdim=True) f_sig = (f_var + eps).sqrt() # compute instance standard deviation f_mu, f_sig = f_mu.detach(), f_sig.detach() # block gradients x_normed = (x - f_mu) / f_sig # normalize input lmda = Beta(alpha, alpha).sample((batch_size, 1, 1, 1)).to(x.device) # sample instance-wise convex weights perm = torch.randperm(batch_size).to(x.device) # generate shuffling indices f_mu_perm, f_sig_perm = f_mu[perm], f_sig[perm] # shuffling mu_mix = f_mu * lmda + f_mu_perm * (1 - lmda) # generate mixed mean sig_mix = f_sig * lmda + f_sig_perm * (1 - lmda) # generate mixed standard deviation x = x_normed * sig_mix + mu_mix # denormalize input using the mixed statistics if mix_labels: return x, perm, lmda return x