Spaces:
Configuration error
Configuration error
import os | |
import sys | |
import traceback | |
import cv2 | |
import torch | |
import modules.face_restoration | |
import modules.shared | |
from modules import shared, devices, modelloader | |
from modules.paths import models_path | |
# codeformer people made a choice to include modified basicsr library to their project which makes | |
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN. | |
# I am making a choice to include some files from codeformer to work around this issue. | |
model_dir = "Codeformer" | |
model_path = os.path.join(models_path, model_dir) | |
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' | |
have_codeformer = False | |
codeformer = None | |
def setup_model(dirname): | |
global model_path | |
if not os.path.exists(model_path): | |
os.makedirs(model_path) | |
path = modules.paths.paths.get("CodeFormer", None) | |
if path is None: | |
return | |
try: | |
from torchvision.transforms.functional import normalize | |
from modules.codeformer.codeformer_arch import CodeFormer | |
from basicsr.utils import img2tensor, tensor2img | |
from facelib.utils.face_restoration_helper import FaceRestoreHelper | |
from facelib.detection.retinaface import retinaface | |
net_class = CodeFormer | |
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): | |
def name(self): | |
return "CodeFormer" | |
def __init__(self, dirname): | |
self.net = None | |
self.face_helper = None | |
self.cmd_dir = dirname | |
def create_models(self): | |
if self.net is not None and self.face_helper is not None: | |
self.net.to(devices.device_codeformer) | |
return self.net, self.face_helper | |
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth']) | |
if len(model_paths) != 0: | |
ckpt_path = model_paths[0] | |
else: | |
print("Unable to load codeformer model.") | |
return None, None | |
net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer) | |
checkpoint = torch.load(ckpt_path)['params_ema'] | |
net.load_state_dict(checkpoint) | |
net.eval() | |
if hasattr(retinaface, 'device'): | |
retinaface.device = devices.device_codeformer | |
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) | |
self.net = net | |
self.face_helper = face_helper | |
return net, face_helper | |
def send_model_to(self, device): | |
self.net.to(device) | |
self.face_helper.face_det.to(device) | |
self.face_helper.face_parse.to(device) | |
def restore(self, np_image, w=None): | |
np_image = np_image[:, :, ::-1] | |
original_resolution = np_image.shape[0:2] | |
self.create_models() | |
if self.net is None or self.face_helper is None: | |
return np_image | |
self.send_model_to(devices.device_codeformer) | |
self.face_helper.clean_all() | |
self.face_helper.read_image(np_image) | |
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) | |
self.face_helper.align_warp_face() | |
for cropped_face in self.face_helper.cropped_faces: | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) | |
try: | |
with torch.no_grad(): | |
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) | |
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
restored_face = restored_face.astype('uint8') | |
self.face_helper.add_restored_face(restored_face) | |
self.face_helper.get_inverse_affine(None) | |
restored_img = self.face_helper.paste_faces_to_input_image() | |
restored_img = restored_img[:, :, ::-1] | |
if original_resolution != restored_img.shape[0:2]: | |
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) | |
self.face_helper.clean_all() | |
if shared.opts.face_restoration_unload: | |
self.send_model_to(devices.cpu) | |
return restored_img | |
global have_codeformer | |
have_codeformer = True | |
global codeformer | |
codeformer = FaceRestorerCodeFormer(dirname) | |
shared.face_restorers.append(codeformer) | |
except Exception: | |
print("Error setting up CodeFormer:", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
# sys.path = stored_sys_path | |