File size: 11,246 Bytes
8bf5e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import re
import shutil
import json


import torch
import tqdm

from modules import shared, images, sd_models, sd_vae, sd_models_config
from modules.ui_common import plaintext_to_html
import gradio as gr
import safetensors.torch


def run_pnginfo(image):
    if image is None:
        return '', '', ''

    geninfo, items = images.read_info_from_image(image)
    items = {**{'parameters': geninfo}, **items}

    info = ''
    for key, text in items.items():
        info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"

    if len(info) == 0:
        message = "Nothing found in the image."
        info = f"<div><p>{message}<p></div>"

    return '', geninfo, info


def create_config(ckpt_result, config_source, a, b, c):
    def config(x):
        res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None
        return res if res != shared.sd_default_config else None

    if config_source == 0:
        cfg = config(a) or config(b) or config(c)
    elif config_source == 1:
        cfg = config(b)
    elif config_source == 2:
        cfg = config(c)
    else:
        cfg = None

    if cfg is None:
        return

    filename, _ = os.path.splitext(ckpt_result)
    checkpoint_filename = filename + ".yaml"

    print("Copying config:")
    print("   from:", cfg)
    print("     to:", checkpoint_filename)
    shutil.copyfile(cfg, checkpoint_filename)


checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]


def to_half(tensor, enable):
    if enable and tensor.dtype == torch.float:
        return tensor.half()

    return tensor


def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
    shared.state.begin()
    shared.state.job = 'model-merge'

    def fail(message):
        shared.state.textinfo = message
        shared.state.end()
        return [*[gr.update() for _ in range(4)], message]

    def weighted_sum(theta0, theta1, alpha):
        return ((1 - alpha) * theta0) + (alpha * theta1)

    def get_difference(theta1, theta2):
        return theta1 - theta2

    def add_difference(theta0, theta1_2_diff, alpha):
        return theta0 + (alpha * theta1_2_diff)

    def filename_weighted_sum():
        a = primary_model_info.model_name
        b = secondary_model_info.model_name
        Ma = round(1 - multiplier, 2)
        Mb = round(multiplier, 2)

        return f"{Ma}({a}) + {Mb}({b})"

    def filename_add_difference():
        a = primary_model_info.model_name
        b = secondary_model_info.model_name
        c = tertiary_model_info.model_name
        M = round(multiplier, 2)

        return f"{a} + {M}({b} - {c})"

    def filename_nothing():
        return primary_model_info.model_name

    theta_funcs = {
        "Weighted sum": (filename_weighted_sum, None, weighted_sum),
        "Add difference": (filename_add_difference, get_difference, add_difference),
        "No interpolation": (filename_nothing, None, None),
    }
    filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
    shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)

    if not primary_model_name:
        return fail("Failed: Merging requires a primary model.")

    primary_model_info = sd_models.checkpoints_list[primary_model_name]

    if theta_func2 and not secondary_model_name:
        return fail("Failed: Merging requires a secondary model.")

    secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None

    if theta_func1 and not tertiary_model_name:
        return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")

    tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None

    result_is_inpainting_model = False
    result_is_instruct_pix2pix_model = False

    if theta_func2:
        shared.state.textinfo = "Loading B"
        print(f"Loading {secondary_model_info.filename}...")
        theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
    else:
        theta_1 = None

    if theta_func1:
        shared.state.textinfo = "Loading C"
        print(f"Loading {tertiary_model_info.filename}...")
        theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')

        shared.state.textinfo = 'Merging B and C'
        shared.state.sampling_steps = len(theta_1.keys())
        for key in tqdm.tqdm(theta_1.keys()):
            if key in checkpoint_dict_skip_on_merge:
                continue

            if 'model' in key:
                if key in theta_2:
                    t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
                    theta_1[key] = theta_func1(theta_1[key], t2)
                else:
                    theta_1[key] = torch.zeros_like(theta_1[key])

            shared.state.sampling_step += 1
        del theta_2

        shared.state.nextjob()

    shared.state.textinfo = f"Loading {primary_model_info.filename}..."
    print(f"Loading {primary_model_info.filename}...")
    theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')

    print("Merging...")
    shared.state.textinfo = 'Merging A and B'
    shared.state.sampling_steps = len(theta_0.keys())
    for key in tqdm.tqdm(theta_0.keys()):
        if theta_1 and 'model' in key and key in theta_1:

            if key in checkpoint_dict_skip_on_merge:
                continue

            a = theta_0[key]
            b = theta_1[key]

            # this enables merging an inpainting model (A) with another one (B);
            # where normal model would have 4 channels, for latenst space, inpainting model would
            # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
            if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
                if a.shape[1] == 4 and b.shape[1] == 9:
                    raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
                if a.shape[1] == 4 and b.shape[1] == 8:
                    raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")

                if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
                    theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common.  Otherwise we get an error due to dimension mismatch.
                    result_is_instruct_pix2pix_model = True
                else:
                    assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
                    theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
                    result_is_inpainting_model = True
            else:
                theta_0[key] = theta_func2(a, b, multiplier)

            theta_0[key] = to_half(theta_0[key], save_as_half)

        shared.state.sampling_step += 1

    del theta_1

    bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
    if bake_in_vae_filename is not None:
        print(f"Baking in VAE from {bake_in_vae_filename}")
        shared.state.textinfo = 'Baking in VAE'
        vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')

        for key in vae_dict.keys():
            theta_0_key = 'first_stage_model.' + key
            if theta_0_key in theta_0:
                theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)

        del vae_dict

    if save_as_half and not theta_func2:
        for key in theta_0.keys():
            theta_0[key] = to_half(theta_0[key], save_as_half)

    if discard_weights:
        regex = re.compile(discard_weights)
        for key in list(theta_0):
            if re.search(regex, key):
                theta_0.pop(key, None)

    ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path

    filename = filename_generator() if custom_name == '' else custom_name
    filename += ".inpainting" if result_is_inpainting_model else ""
    filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
    filename += "." + checkpoint_format

    output_modelname = os.path.join(ckpt_dir, filename)

    shared.state.nextjob()
    shared.state.textinfo = "Saving"
    print(f"Saving to {output_modelname}...")

    metadata = None

    if save_metadata:
        metadata = {"format": "pt"}

        merge_recipe = {
            "type": "webui", # indicate this model was merged with webui's built-in merger
            "primary_model_hash": primary_model_info.sha256,
            "secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
            "tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
            "interp_method": interp_method,
            "multiplier": multiplier,
            "save_as_half": save_as_half,
            "custom_name": custom_name,
            "config_source": config_source,
            "bake_in_vae": bake_in_vae,
            "discard_weights": discard_weights,
            "is_inpainting": result_is_inpainting_model,
            "is_instruct_pix2pix": result_is_instruct_pix2pix_model
        }
        metadata["sd_merge_recipe"] = json.dumps(merge_recipe)

        sd_merge_models = {}

        def add_model_metadata(checkpoint_info):
            checkpoint_info.calculate_shorthash()
            sd_merge_models[checkpoint_info.sha256] = {
                "name": checkpoint_info.name,
                "legacy_hash": checkpoint_info.hash,
                "sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
            }

            sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {}))

        add_model_metadata(primary_model_info)
        if secondary_model_info:
            add_model_metadata(secondary_model_info)
        if tertiary_model_info:
            add_model_metadata(tertiary_model_info)

        metadata["sd_merge_models"] = json.dumps(sd_merge_models)

    _, extension = os.path.splitext(output_modelname)
    if extension.lower() == ".safetensors":
        safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
    else:
        torch.save(theta_0, output_modelname)

    sd_models.list_models()
    created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
    if created_model:
        created_model.calculate_shorthash()

    create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)

    print(f"Checkpoint saved to {output_modelname}.")
    shared.state.textinfo = "Checkpoint saved"
    shared.state.end()

    return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]