File size: 5,567 Bytes
8bf5e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import math

import modules.scripts as scripts
import gradio as gr
from PIL import Image, ImageDraw

from modules import images, devices
from modules.processing import Processed, process_images
from modules.shared import opts, state


class Script(scripts.Script):
    def title(self):
        return "Poor man's outpainting"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):
        if not is_img2img:
            return None

        pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
        mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
        inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
        direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))

        return [pixels, mask_blur, inpainting_fill, direction]

    def run(self, p, pixels, mask_blur, inpainting_fill, direction):
        initial_seed = None
        initial_info = None

        p.mask_blur = mask_blur * 2
        p.inpainting_fill = inpainting_fill
        p.inpaint_full_res = False

        left = pixels if "left" in direction else 0
        right = pixels if "right" in direction else 0
        up = pixels if "up" in direction else 0
        down = pixels if "down" in direction else 0

        init_img = p.init_images[0]
        target_w = math.ceil((init_img.width + left + right) / 64) * 64
        target_h = math.ceil((init_img.height + up + down) / 64) * 64

        if left > 0:
            left = left * (target_w - init_img.width) // (left + right)
        if right > 0:
            right = target_w - init_img.width - left

        if up > 0:
            up = up * (target_h - init_img.height) // (up + down)

        if down > 0:
            down = target_h - init_img.height - up

        img = Image.new("RGB", (target_w, target_h))
        img.paste(init_img, (left, up))

        mask = Image.new("L", (img.width, img.height), "white")
        draw = ImageDraw.Draw(mask)
        draw.rectangle((
            left + (mask_blur * 2 if left > 0 else 0),
            up + (mask_blur * 2 if up > 0 else 0),
            mask.width - right - (mask_blur * 2 if right > 0 else 0),
            mask.height - down - (mask_blur * 2 if down > 0 else 0)
        ), fill="black")

        latent_mask = Image.new("L", (img.width, img.height), "white")
        latent_draw = ImageDraw.Draw(latent_mask)
        latent_draw.rectangle((
             left + (mask_blur//2 if left > 0 else 0),
             up + (mask_blur//2 if up > 0 else 0),
             mask.width - right - (mask_blur//2 if right > 0 else 0),
             mask.height - down - (mask_blur//2 if down > 0 else 0)
        ), fill="black")

        devices.torch_gc()

        grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels)
        grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
        grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels)

        p.n_iter = 1
        p.batch_size = 1
        p.do_not_save_grid = True
        p.do_not_save_samples = True

        work = []
        work_mask = []
        work_latent_mask = []
        work_results = []

        for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles):
            for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask):
                x, w = tiledata[0:2]

                if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
                    continue

                work.append(tiledata[2])
                work_mask.append(tiledata_mask[2])
                work_latent_mask.append(tiledata_latent_mask[2])

        batch_count = len(work)
        print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.")

        state.job_count = batch_count

        for i in range(batch_count):
            p.init_images = [work[i]]
            p.image_mask = work_mask[i]
            p.latent_mask = work_latent_mask[i]

            state.job = f"Batch {i + 1} out of {batch_count}"
            processed = process_images(p)

            if initial_seed is None:
                initial_seed = processed.seed
                initial_info = processed.info

            p.seed = processed.seed + 1
            work_results += processed.images


        image_index = 0
        for y, h, row in grid.tiles:
            for tiledata in row:
                x, w = tiledata[0:2]

                if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
                    continue

                tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
                image_index += 1

        combined_image = images.combine_grid(grid)

        if opts.samples_save:
            images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)

        processed = Processed(p, [combined_image], initial_seed, initial_info)

        return processed