Spaces:
Running
on
Zero
Running
on
Zero
emirhanbilgic
commited on
Commit
•
828d42b
1
Parent(s):
b40d902
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,36 @@ import torch
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
import soundfile as sf
|
6 |
-
import
|
7 |
|
8 |
-
|
9 |
-
model_name = "microsoft/speecht5_tts"
|
10 |
-
processor = SpeechT5Processor.from_pretrained(model_name)
|
11 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr")
|
12 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
def text_to_speech(text):
|
19 |
-
inputs = processor(text=text, return_tensors="pt")
|
20 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
21 |
-
|
22 |
-
return
|
23 |
|
24 |
-
# Create Gradio interface
|
25 |
iface = gr.Interface(
|
26 |
fn=text_to_speech,
|
27 |
-
inputs=gr.Textbox(label="Enter Turkish text to convert to speech"
|
28 |
outputs=gr.Audio(label="Generated Speech"),
|
29 |
title="Turkish SpeechT5 Text-to-Speech Demo",
|
30 |
description="Enter Turkish text and listen to the generated speech using the fine-tuned SpeechT5 model."
|
31 |
)
|
32 |
|
33 |
-
# Launch the demo
|
34 |
iface.launch()
|
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
import soundfile as sf
|
6 |
+
import spaces
|
7 |
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def load_models_and_data():
|
11 |
+
model_name = "microsoft/speecht5_tts"
|
12 |
+
processor = SpeechT5Processor.from_pretrained(model_name)
|
13 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device)
|
14 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
15 |
+
|
16 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
17 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
18 |
+
|
19 |
+
return model, processor, vocoder, speaker_embeddings
|
20 |
|
21 |
+
model, processor, vocoder, speaker_embeddings = load_models_and_data()
|
22 |
+
|
23 |
+
@spaces.GPU(duration = 60)
|
24 |
def text_to_speech(text):
|
25 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
26 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
27 |
+
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
28 |
+
return "output.wav"
|
29 |
|
|
|
30 |
iface = gr.Interface(
|
31 |
fn=text_to_speech,
|
32 |
+
inputs=gr.Textbox(label="Enter Turkish text to convert to speech"),
|
33 |
outputs=gr.Audio(label="Generated Speech"),
|
34 |
title="Turkish SpeechT5 Text-to-Speech Demo",
|
35 |
description="Enter Turkish text and listen to the generated speech using the fine-tuned SpeechT5 model."
|
36 |
)
|
37 |
|
|
|
38 |
iface.launch()
|