AndranikSargsyan
add support for diffusers checkpoint loading
f1cc496
# pytorch_diffusion + derived encoder decoder
import math
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any
from .attention.memory_efficient_cross_attention import MemoryEfficientCrossAttention
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
print("No module 'xformers'. Proceeding without it.")
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels,in_channels,kernel_size=3,stride=1,padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(
x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels,in_channels,kernel_size=3,stride=2,padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,out_channels,kernel_size=3,stride=1,padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels,out_channels,kernel_size=3,stride=1,padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,out_channels,kernel_size=3,stride=1,padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=1,padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.k = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.v = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h*w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h*w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h*w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
# b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x+h_
class MemoryEfficientAttnBlock(nn.Module):
"""
Uses xformers efficient implementation,
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
Note: this is a single-head self-attention operation
"""
#
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.k = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.v = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,padding=0)
self.attention_op: Optional[Any] = None
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
out = self.proj_out(out)
return x+out
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
def forward(self, x, context=None, mask=None):
b, c, h, w = x.shape
x = rearrange(x, 'b c h w -> b (h w) c')
out = super().forward(x, context=context, mask=mask)
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
return x + out
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn",
"linear", "none"], f'attn_type {attn_type} unknown'
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
attn_type = "vanilla-xformers"
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
if attn_type == "vanilla":
assert attn_kwargs is None
return AttnBlock(in_channels)
elif attn_type == "vanilla-xformers":
# print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
return MemoryEfficientAttnBlock(in_channels)
elif type == "memory-efficient-cross-attn":
attn_kwargs["query_dim"] = in_channels
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
elif attn_type == "none":
return nn.Identity(in_channels)
else:
raise NotImplementedError()
class Encoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
**ignore_kwargs):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels,
self.ch,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_ch_mult = (1,)+tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch*in_ch_mult[i_level]
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions-1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,out_channels=block_in,temb_channels=self.temb_ch,dropout=dropout)
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResnetBlock(in_channels=block_in,out_channels=block_in,temb_channels=self.temb_ch,dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in,2*z_channels if double_z else z_channels,kernel_size=3,stride=1,padding=1)
def forward(self, x):
# timestep embedding
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions-1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
attn_type="vanilla", **ignorekwargs):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,)+tuple(ch_mult)
block_in = ch*ch_mult[self.num_resolutions-1]
curr_res = resolution // 2**(self.num_resolutions-1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels,block_in,kernel_size=3,stride=1,padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,out_channels=block_in,temb_channels=self.temb_ch,dropout=dropout)
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResnetBlock(in_channels=block_in,out_channels=block_in,temb_channels=self.temb_ch,dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks+1):
block.append(ResnetBlock(in_channels=block_in,out_channels=block_out,temb_channels=self.temb_ch,dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in,out_ch,kernel_size=3,stride=1,padding=1)
def forward(self, z):
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
if self.tanh_out:
h = torch.tanh(h)
return h