File size: 9,397 Bytes
bfd34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!


import os
import math
import torch
import torch.nn as nn
import numpy as np
from einops import repeat


def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
    if schedule == "linear":
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )

    elif schedule == "cosine":
        timesteps = (
                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = np.clip(betas, a_min=0, a_max=0.999)

    elif schedule == "squaredcos_cap_v2":  # used for karlo prior
        # return early
        return betas_for_alpha_bar(
            n_timestep,
            lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
        )

    elif schedule == "sqrt_linear":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
    elif schedule == "sqrt":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")
    return betas.numpy()


def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
    if ddim_discr_method == 'uniform':
        c = num_ddpm_timesteps // num_ddim_timesteps
        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
    elif ddim_discr_method == 'quad':
        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
    else:
        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')

    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
    # add one to get the final alpha values right (the ones from first scale to data during sampling)
    steps_out = ddim_timesteps + 1
    if verbose:
        print(f'Selected timesteps for ddim sampler: {steps_out}')
    return steps_out


def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
    # select alphas for computing the variance schedule
    alphas = alphacums[ddim_timesteps]
    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())

    # according the the formula provided in https://arxiv.org/abs/2010.02502
    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
    if verbose:
        print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
        print(f'For the chosen value of eta, which is {eta}, '
              f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
    return sigmas, alphas, alphas_prev


def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].
    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)


def checkpoint(func, inputs, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass.
    :param func: the function to evaluate.
    :param inputs: the argument sequence to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        args = tuple(inputs) + tuple(params)
        return CheckpointFunction.apply(func, len(inputs), *args)
    else:
        return func(*inputs)


class CheckpointFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, run_function, length, *args):
        ctx.run_function = run_function
        ctx.input_tensors = list(args[:length])
        ctx.input_params = list(args[length:])
        ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
                                   "dtype": torch.get_autocast_gpu_dtype(),
                                   "cache_enabled": torch.is_autocast_cache_enabled()}
        with torch.no_grad():
            output_tensors = ctx.run_function(*ctx.input_tensors)
        return output_tensors

    @staticmethod
    def backward(ctx, *output_grads):
        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
        with torch.enable_grad(), \
                torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
            # Fixes a bug where the first op in run_function modifies the
            # Tensor storage in place, which is not allowed for detach()'d
            # Tensors.
            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
            output_tensors = ctx.run_function(*shallow_copies)
        input_grads = torch.autograd.grad(
            output_tensors,
            ctx.input_tensors + ctx.input_params,
            output_grads,
            allow_unused=True,
        )
        del ctx.input_tensors
        del ctx.input_params
        del output_tensors
        return (None, None) + input_grads


def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    if not repeat_only:
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=timesteps.device)
        args = timesteps[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    else:
        embedding = repeat(timesteps, 'b -> b d', d=dim)
    return embedding


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def scale_module(module, scale):
    """
    Scale the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().mul_(scale)
    return module


def mean_flat(tensor):
    """
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def normalization(channels):
    """
    Make a standard normalization layer.
    :param channels: number of input channels.
    :return: an nn.Module for normalization.
    """
    return GroupNorm32(32, channels)


# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


class GroupNorm32(nn.GroupNorm):
    def forward(self, x):
        return super().forward(x.float()).type(x.dtype)


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()