import hashlib import logging import os import PyPDF2 from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from tqdm import tqdm from modules.config import local_embedding from modules.presets import * from modules.utils import * def get_documents(file_src): from langchain.schema import Document from langchain.text_splitter import TokenTextSplitter text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) documents = [] logging.debug("Loading documents...") logging.debug(f"file_src: {file_src}") for file in file_src: filepath = file.name filename = os.path.basename(filepath) file_type = os.path.splitext(filename)[1] logging.info(f"loading file: {filename}") texts = None try: if file_type == ".pdf": logging.debug("Loading PDF...") try: from modules.config import advance_docs from modules.pdf_func import parse_pdf two_column = advance_docs["pdf"].get("two_column", False) pdftext = parse_pdf(filepath, two_column).text except: pdftext = "" with open(filepath, "rb") as pdfFileObj: pdfReader = PyPDF2.PdfReader(pdfFileObj) for page in tqdm(pdfReader.pages): pdftext += page.extract_text() texts = [Document(page_content=pdftext, metadata={"source": filepath})] elif file_type == ".docx": logging.debug("Loading Word...") from langchain.document_loaders import \ UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader(filepath) texts = loader.load() elif file_type == ".pptx": logging.debug("Loading PowerPoint...") from langchain.document_loaders import \ UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader(filepath) texts = loader.load() elif file_type == ".epub": logging.debug("Loading EPUB...") from langchain.document_loaders import UnstructuredEPubLoader loader = UnstructuredEPubLoader(filepath) texts = loader.load() elif file_type == ".xlsx": logging.debug("Loading Excel...") text_list = excel_to_string(filepath) texts = [] for elem in text_list: texts.append(Document(page_content=elem, metadata={"source": filepath})) elif file_type in [".jpg", ".jpeg", ".png", ".heif", ".heic", ".webp", ".bmp", ".gif", ".tiff", ".tif"]: raise gr.Warning(i18n("不支持的文件: ") + filename + i18n(",请使用 .pdf, .docx, .pptx, .epub, .xlsx 等文档。")) else: logging.debug("Loading text file...") from langchain.document_loaders import TextLoader loader = TextLoader(filepath, "utf8") texts = loader.load() except Exception as e: import traceback logging.error(f"Error loading file: {filename}") traceback.print_exc() if texts is not None: texts = text_splitter.split_documents(texts) documents.extend(texts) logging.debug("Documents loaded.") return documents def construct_index( api_key, file_src, max_input_size=4096, num_outputs=5, max_chunk_overlap=20, chunk_size_limit=600, embedding_limit=None, separator=" ", load_from_cache_if_possible=True, ): if api_key: os.environ["OPENAI_API_KEY"] = api_key else: # 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx" logging.debug(f"api base: {os.environ.get('OPENAI_API_BASE', None)}") chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit embedding_limit = None if embedding_limit == 0 else embedding_limit separator = " " if separator == "" else separator index_name = get_file_hash(file_src) index_path = f"./index/{index_name}" if local_embedding: embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/distiluse-base-multilingual-cased-v2") else: if os.environ.get("OPENAI_API_TYPE", "openai") == "openai": embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get( "OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key)) else: embeddings = OpenAIEmbeddings(deployment=os.environ["AZURE_EMBEDDING_DEPLOYMENT_NAME"], openai_api_key=os.environ["AZURE_OPENAI_API_KEY"], model=os.environ["AZURE_EMBEDDING_MODEL_NAME"], openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"], openai_api_type="azure") if os.path.exists(index_path) and load_from_cache_if_possible: logging.info(i18n("找到了缓存的索引文件,加载中……")) return FAISS.load_local(index_path, embeddings, allow_dangerous_deserialization=True) else: documents = get_documents(file_src) logging.debug(i18n("构建索引中……")) if documents: with retrieve_proxy(): index = FAISS.from_documents(documents, embeddings) else: raise Exception(i18n("没有找到任何支持的文档。")) logging.debug(i18n("索引构建完成!")) os.makedirs("./index", exist_ok=True) index.save_local(index_path) logging.debug(i18n("索引已保存至本地!")) return index