chuangpt / modules /index_func.py
eggacheb's picture
Upload 105 files
1ea2ba0 verified
raw
history blame
6.09 kB
import hashlib
import logging
import os
import PyPDF2
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from tqdm import tqdm
from modules.config import local_embedding
from modules.presets import *
from modules.utils import *
def get_documents(file_src):
from langchain.schema import Document
from langchain.text_splitter import TokenTextSplitter
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
documents = []
logging.debug("Loading documents...")
logging.debug(f"file_src: {file_src}")
for file in file_src:
filepath = file.name
filename = os.path.basename(filepath)
file_type = os.path.splitext(filename)[1]
logging.info(f"loading file: {filename}")
texts = None
try:
if file_type == ".pdf":
logging.debug("Loading PDF...")
try:
from modules.config import advance_docs
from modules.pdf_func import parse_pdf
two_column = advance_docs["pdf"].get("two_column", False)
pdftext = parse_pdf(filepath, two_column).text
except:
pdftext = ""
with open(filepath, "rb") as pdfFileObj:
pdfReader = PyPDF2.PdfReader(pdfFileObj)
for page in tqdm(pdfReader.pages):
pdftext += page.extract_text()
texts = [Document(page_content=pdftext,
metadata={"source": filepath})]
elif file_type == ".docx":
logging.debug("Loading Word...")
from langchain.document_loaders import \
UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader(filepath)
texts = loader.load()
elif file_type == ".pptx":
logging.debug("Loading PowerPoint...")
from langchain.document_loaders import \
UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader(filepath)
texts = loader.load()
elif file_type == ".epub":
logging.debug("Loading EPUB...")
from langchain.document_loaders import UnstructuredEPubLoader
loader = UnstructuredEPubLoader(filepath)
texts = loader.load()
elif file_type == ".xlsx":
logging.debug("Loading Excel...")
text_list = excel_to_string(filepath)
texts = []
for elem in text_list:
texts.append(Document(page_content=elem,
metadata={"source": filepath}))
elif file_type in [".jpg", ".jpeg", ".png", ".heif", ".heic", ".webp", ".bmp", ".gif", ".tiff", ".tif"]:
raise gr.Warning(i18n("不支持的文件: ") + filename + i18n(",请使用 .pdf, .docx, .pptx, .epub, .xlsx 等文档。"))
else:
logging.debug("Loading text file...")
from langchain.document_loaders import TextLoader
loader = TextLoader(filepath, "utf8")
texts = loader.load()
except Exception as e:
import traceback
logging.error(f"Error loading file: {filename}")
traceback.print_exc()
if texts is not None:
texts = text_splitter.split_documents(texts)
documents.extend(texts)
logging.debug("Documents loaded.")
return documents
def construct_index(
api_key,
file_src,
max_input_size=4096,
num_outputs=5,
max_chunk_overlap=20,
chunk_size_limit=600,
embedding_limit=None,
separator=" ",
load_from_cache_if_possible=True,
):
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
else:
# 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx"
logging.debug(f"api base: {os.environ.get('OPENAI_API_BASE', None)}")
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
embedding_limit = None if embedding_limit == 0 else embedding_limit
separator = " " if separator == "" else separator
index_name = get_file_hash(file_src)
index_path = f"./index/{index_name}"
if local_embedding:
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/distiluse-base-multilingual-cased-v2")
else:
if os.environ.get("OPENAI_API_TYPE", "openai") == "openai":
embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get(
"OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key))
else:
embeddings = OpenAIEmbeddings(deployment=os.environ["AZURE_EMBEDDING_DEPLOYMENT_NAME"], openai_api_key=os.environ["AZURE_OPENAI_API_KEY"],
model=os.environ["AZURE_EMBEDDING_MODEL_NAME"], openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"], openai_api_type="azure")
if os.path.exists(index_path) and load_from_cache_if_possible:
logging.info(i18n("找到了缓存的索引文件,加载中……"))
return FAISS.load_local(index_path, embeddings, allow_dangerous_deserialization=True)
else:
documents = get_documents(file_src)
logging.debug(i18n("构建索引中……"))
if documents:
with retrieve_proxy():
index = FAISS.from_documents(documents, embeddings)
else:
raise Exception(i18n("没有找到任何支持的文档。"))
logging.debug(i18n("索引构建完成!"))
os.makedirs("./index", exist_ok=True)
index.save_local(index_path)
logging.debug(i18n("索引已保存至本地!"))
return index