nikunjkdtechnoland
init commit some more files
89c278d
raw
history blame
12.8 kB
import base64
import imghdr
import io
import os
import sys
from typing import List, Optional, Dict, Tuple
from urllib.parse import urlparse
import cv2
from PIL import Image, ImageOps, PngImagePlugin
import numpy as np
import torch
from iopaint.const import MPS_UNSUPPORT_MODELS
from loguru import logger
from torch.hub import download_url_to_file, get_dir
import hashlib
def md5sum(filename):
md5 = hashlib.md5()
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(128 * md5.block_size), b""):
md5.update(chunk)
return md5.hexdigest()
def switch_mps_device(model_name, device):
if model_name in MPS_UNSUPPORT_MODELS and str(device) == "mps":
logger.info(f"{model_name} not support mps, switch to cpu")
return torch.device("cpu")
return device
def get_cache_path_by_url(url):
parts = urlparse(url)
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, "checkpoints")
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
return cached_file
def get_cache_path_by_local(url):
root_path = os.getcwd()
model_path = os.path.join(root_path, 'pretrained-model', 'big-lama.pt')
return model_path
def download_model(url, model_md5: str = None):
cached_file = get_cache_path_by_url(url)
# cached_file = get_cache_path_by_local(url)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
download_url_to_file(url, cached_file, hash_prefix, progress=True)
if model_md5:
_md5 = md5sum(cached_file)
if model_md5 == _md5:
logger.info(f"Download model success, md5: {_md5}")
else:
try:
os.remove(cached_file)
logger.error(
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
)
except:
logger.error(
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {cached_file} and restart iopaint."
)
exit(-1)
return cached_file
def ceil_modulo(x, mod):
if x % mod == 0:
return x
return (x // mod + 1) * mod
def handle_error(model_path, model_md5, e):
_md5 = md5sum(model_path)
if _md5 != model_md5:
try:
os.remove(model_path)
logger.error(
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
)
except:
logger.error(
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {model_path} and restart iopaint."
)
else:
logger.error(
f"Failed to load model {model_path},"
f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
)
exit(-1)
def load_jit_model(url_or_path, device, model_md5: str):
if os.path.exists(url_or_path):
model_path = url_or_path
else:
model_path = download_model(url_or_path, model_md5)
logger.info(f"Loading model from: {model_path}")
try:
model = torch.jit.load(model_path, map_location="cpu").to(device)
except Exception as e:
handle_error(model_path, model_md5, e)
model.eval()
return model
def load_model(model: torch.nn.Module, url_or_path, device, model_md5):
if os.path.exists(url_or_path):
model_path = url_or_path
else:
model_path = download_model(url_or_path, model_md5)
try:
logger.info(f"Loading model from: {model_path}")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict, strict=True)
model.to(device)
except Exception as e:
handle_error(model_path, model_md5, e)
model.eval()
return model
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
data = cv2.imencode(
f".{ext}",
image_numpy,
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
)[1]
image_bytes = data.tobytes()
return image_bytes
def pil_to_bytes(pil_img, ext: str, quality: int = 95, infos={}) -> bytes:
with io.BytesIO() as output:
kwargs = {k: v for k, v in infos.items() if v is not None}
if ext == "jpg":
ext = "jpeg"
if "png" == ext.lower() and "parameters" in kwargs:
pnginfo_data = PngImagePlugin.PngInfo()
pnginfo_data.add_text("parameters", kwargs["parameters"])
kwargs["pnginfo"] = pnginfo_data
pil_img.save(output, format=ext, quality=quality, **kwargs)
image_bytes = output.getvalue()
return image_bytes
def pil_to_bytes_single(pil_img, ext: str, quality: int = 95, infos=None) -> bytes:
infos = infos or {} # Use an empty dictionary if infos is None
with io.BytesIO() as output:
kwargs = {k: v for k, v in infos.items() if v is not None}
if ext == "jpg":
ext = "jpeg"
if "png" == ext.lower() and "parameters" in kwargs:
pnginfo_data = PngImagePlugin.PngInfo()
pnginfo_data.add_text("parameters", kwargs["parameters"])
kwargs["pnginfo"] = pnginfo_data
pil_img.save(output, format=ext, quality=quality, **kwargs)
image_bytes = output.getvalue()
return image_bytes
def load_img(img_bytes, gray: bool = False, return_info: bool = False):
alpha_channel = None
image = Image.open(io.BytesIO(img_bytes))
if return_info:
infos = image.info
try:
image = ImageOps.exif_transpose(image)
except:
pass
if gray:
image = image.convert("L")
np_img = np.array(image)
else:
if image.mode == "RGBA":
np_img = np.array(image)
alpha_channel = np_img[:, :, -1]
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
else:
image = image.convert("RGB")
np_img = np.array(image)
if return_info:
return np_img, alpha_channel, infos
return np_img, alpha_channel
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def resize_max_size(
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
) -> np.ndarray:
# Resize image's longer size to size_limit if longer size larger than size_limit
h, w = np_img.shape[:2]
if max(h, w) > size_limit:
ratio = size_limit / max(h, w)
new_w = int(w * ratio + 0.5)
new_h = int(h * ratio + 0.5)
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
else:
return np_img
def pad_img_to_modulo(
img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None
):
"""
Args:
img: [H, W, C]
mod:
square: 是否为正方形
min_size:
Returns:
"""
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
height, width = img.shape[:2]
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
if min_size is not None:
assert min_size % mod == 0
out_width = max(min_size, out_width)
out_height = max(min_size, out_height)
if square:
max_size = max(out_height, out_width)
out_height = max_size
out_width = max_size
return np.pad(
img,
((0, out_height - height), (0, out_width - width), (0, 0)),
mode="symmetric",
)
def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]:
"""
Args:
mask: (h, w, 1) 0~255
Returns:
"""
height, width = mask.shape[:2]
_, thresh = cv2.threshold(mask, 127, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
boxes = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
box = np.array([x, y, x + w, y + h]).astype(int)
box[::2] = np.clip(box[::2], 0, width)
box[1::2] = np.clip(box[1::2], 0, height)
boxes.append(box)
return boxes
def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]:
"""
Args:
mask: (h, w) 0~255
Returns:
"""
_, thresh = cv2.threshold(mask, 127, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
max_index = -1
for i, cnt in enumerate(contours):
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_index = i
if max_index != -1:
new_mask = np.zeros_like(mask)
return cv2.drawContours(new_mask, contours, max_index, 255, -1)
else:
return mask
def is_mac():
return sys.platform == "darwin"
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def decode_base64_to_image(
encoding: str, gray=False
) -> Tuple[np.array, Optional[np.array], Dict]:
if encoding.startswith("data:image/") or encoding.startswith(
"data:application/octet-stream;base64,"
):
encoding = encoding.split(";")[1].split(",")[1]
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
alpha_channel = None
try:
image = ImageOps.exif_transpose(image)
except:
pass
# exif_transpose will remove exif rotate info,we must call image.info after exif_transpose
infos = image.info
if gray:
image = image.convert("L")
np_img = np.array(image)
else:
if image.mode == "RGBA":
np_img = np.array(image)
alpha_channel = np_img[:, :, -1]
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
else:
image = image.convert("RGB")
np_img = np.array(image)
return np_img, alpha_channel, infos
def encode_pil_to_base64(image: Image, quality: int, infos: Dict) -> bytes:
img_bytes = pil_to_bytes(
image,
"png",
quality=quality,
infos=infos,
)
return base64.b64encode(img_bytes)
def concat_alpha_channel(rgb_np_img, alpha_channel) -> np.ndarray:
if alpha_channel is not None:
if alpha_channel.shape[:2] != rgb_np_img.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(rgb_np_img.shape[1], rgb_np_img.shape[0])
)
rgb_np_img = np.concatenate(
(rgb_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
return rgb_np_img
def adjust_mask(mask: np.ndarray, kernel_size: int, operate):
# fronted brush color "ffcc00bb"
# kernel_size = kernel_size*2+1
mask[mask >= 127] = 255
mask[mask < 127] = 0
if operate == "reverse":
mask = 255 - mask
else:
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1)
)
if operate == "expand":
mask = cv2.dilate(
mask,
kernel,
iterations=1,
)
else:
mask = cv2.erode(
mask,
kernel,
iterations=1,
)
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
res_mask[mask > 128] = [255, 203, 0, int(255 * 0.73)]
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
return res_mask
def gen_frontend_mask(bgr_or_gray_mask):
if len(bgr_or_gray_mask.shape) == 3 and bgr_or_gray_mask.shape[2] != 1:
bgr_or_gray_mask = cv2.cvtColor(bgr_or_gray_mask, cv2.COLOR_BGR2GRAY)
# fronted brush color "ffcc00bb"
# TODO: how to set kernel size?
kernel_size = 9
bgr_or_gray_mask = cv2.dilate(
bgr_or_gray_mask,
np.ones((kernel_size, kernel_size), np.uint8),
iterations=1,
)
res_mask = np.zeros(
(bgr_or_gray_mask.shape[0], bgr_or_gray_mask.shape[1], 4), dtype=np.uint8
)
res_mask[bgr_or_gray_mask > 128] = [255, 203, 0, int(255 * 0.73)]
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
return res_mask