object-to-object-replace / only_gradio_server.py
nikunjkdtechnoland
init commit some more files
89c278d
raw
history blame
7.06 kB
import os
import base64
import io
import uuid
from ultralytics import YOLO
import cv2
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
import imageio.v2 as imageio
from trainer import Trainer
from utils.tools import get_config
import torch.nn.functional as F
from iopaint.single_processing import batch_inpaint_cv2
from pathlib import Path
# set current working directory cache instead of default
os.environ["TORCH_HOME"] = "./pretrained-model"
os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
def resize_image(input_image_path, width=640, height=640):
"""Resizes an image from image data and returns the resized image."""
try:
# Read the image using cv2.imread
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
# Resize while maintaining the aspect ratio
shape = img.shape[:2] # current shape [height, width]
new_shape = (width, height) # the shape to resize to
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
# Resize the image
im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
# Pad the image
color = (114, 114, 114) # color used for padding
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
# divide padding into 2 sides
dw /= 2
dh /= 2
# compute padding on all corners
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im
except Exception as e:
print(f"Error resizing image: {e}")
return None # Or handle differently as needed
def load_weights(path, device):
model_weights = torch.load(path)
return {
k: v.to(device)
for k, v in model_weights.items()
}
# Function to convert image to base64
def convert_image_to_base64(image):
# Convert image to bytes
_, buffer = cv2.imencode('.png', image)
# Convert bytes to base64
image_base64 = base64.b64encode(buffer).decode('utf-8')
return image_base64
def convert_to_base64(image):
# Read the image file as binary data
image_data = image.read()
# Encode the binary data as base64
base64_encoded = base64.b64encode(image_data).decode('utf-8')
return base64_encoded
def convert_to_base64_file(image):
# Convert the image to binary data
image_data = cv2.imencode('.png', image)[1].tobytes()
# Encode the binary data as base64
base64_encoded = base64.b64encode(image_data).decode('utf-8')
return base64_encoded
def process_images(input_image, append_image, default_class="chair"):
# Static paths
config_path = Path('configs/config.yaml')
model_path = Path('pretrained-model/torch_model.p')
# Resize input image and get base64 data of resized image
img = resize_image(input_image)
if img is None:
return {'error': 'Failed to decode resized image'}, 419
H, W, _ = img.shape
x_point = 0
y_point = 0
width = 1
height = 1
# Load a model
model = YOLO('pretrained-model/yolov8m-seg.pt') # pretrained YOLOv8m-seg model
# Run batched inference on a list of images
results = model(img, imgsz=(W,H), conf=0.5) # chair class 56 with confidence >= 0.5
names = model.names
class_found = False
for result in results:
for i, label in enumerate(result.boxes.cls):
# Check if the label matches the chair label
if names[int(label)] == default_class:
class_found = True
# Convert the tensor to a numpy array
chair_mask_np = result.masks.data[i].numpy()
kernel = np.ones((5, 5), np.uint8) # Create a 5x5 kernel for dilation
chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2) # Apply dilation
# Find contours to get bounding box
contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Iterate over contours to find the bounding box of each object
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
x_point = x
y_point = y
width = w
height = h
# Get the corresponding mask
mask = result.masks.data[i].numpy() * 255
dilated_mask = cv2.dilate(mask, kernel, iterations=2) # Apply dilation
# Resize the mask to match the dimensions of the original image
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
# call repainting and merge function
output_base64 = repaitingAndMerge(append_image,str(model_path), str(config_path),width, height, x_point, y_point, img, resized_mask)
# Return the output base64 image in the API response
return output_base64
# return class not found in prediction
if not class_found:
return {'message': f'{default_class} object not found in the image'}, 200
def repaitingAndMerge(append_image_path, model_path, config_path, width, height, xposition, yposition, input_base, mask_base):
config = get_config(config_path)
device = torch.device("cpu")
trainer = Trainer(config)
trainer.load_state_dict(load_weights(model_path, device), strict=False)
trainer.eval()
# lama inpainting start
print("lama inpainting start")
inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
print("lama inpainting end")
# Create PIL Image from NumPy array
final_image = Image.fromarray(inpaint_result_np)
print("merge start")
# Load the append image using cv2.imread
append_image = cv2.imread(append_image_path, cv2.IMREAD_UNCHANGED)
cv2.imwrite('appneded-image.png',append_image)
# Resize the append image while preserving transparency
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
# Convert the resized image to RGBA format (assuming it's in BGRA format)
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
# Create a PIL Image from the resized image with transparent background
append_image_pil = Image.fromarray(resized_image)
# Paste the append image onto the final image
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
# Save the resulting image
print("merge end")
# Convert the final image to base64
with io.BytesIO() as output_buffer:
final_image.save(output_buffer, format='PNG')
output_numpy = np.array(final_image)
return output_numpy