Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
import os | |
import pandas as pd | |
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item | |
from huggingface_hub.utils._errors import HfHubHTTPError | |
from pandas import DataFrame | |
import numpy as np | |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS | |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION | |
# Specific intervals for the collections | |
""" | |
intervals = { | |
"1B": pd.Interval(0, 1.5, closed="right"), | |
"3B": pd.Interval(2.5, 3.5, closed="neither"), | |
"7B": pd.Interval(6, 8, closed="neither"), | |
"13B": pd.Interval(10, 14, closed="neither"), | |
"30B": pd.Interval(25, 35, closed="neither"), | |
"65B": pd.Interval(60, 70, closed="neither"), | |
} | |
""" | |
intervals = {k:v for k,v in NUMERIC_INTERVALS.items() if "?" not in k} | |
def update_collections(df: DataFrame): | |
"""This function updates the Open LLM Leaderboard model collection with the latest best models for | |
each size category and type. | |
""" | |
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
cur_best_models = [] | |
cur_best_scores = [] | |
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0} | |
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])] | |
for item in collection.items: | |
try: | |
delete_collection_item( | |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN | |
) | |
except HfHubHTTPError: | |
continue | |
#filter quantized models | |
df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16'])] | |
ix = 0 | |
for size in intervals: | |
interval_scores = [] | |
interval_itens_languages = [] | |
interval_itens = [] | |
numeric_interval = pd.IntervalIndex([intervals[size]]) | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
size_df = df.loc[mask] | |
for model_type, types in types_to_consider: | |
type_emojis = [] | |
for type in types: | |
if type.value.name == "": | |
continue | |
type_emoji = [t[0] for t in type.value.symbol] | |
type_emojis.extend(type_emoji) | |
filtered_df = size_df[size_df[AutoEvalColumn.model_type_symbol.name].isin(type_emojis)] | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]] | |
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False) | |
print(type_emojis, size, list(best_models[AutoEvalColumn.dummy.name])[:10]) | |
# We add them one by one to the leaderboard | |
for i, row in best_models.iterrows(): | |
model = row[AutoEvalColumn.dummy.name] | |
score = row[AutoEvalColumn.average.name] | |
language = row[AutoEvalColumn.main_language.name] | |
if language == 'Portuguese': | |
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" | |
else: | |
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" | |
try: | |
collection = add_collection_item( | |
PATH_TO_COLLECTION, | |
item_id=model, | |
item_type="model", | |
exists_ok=True, | |
note=note, | |
token=H4_TOKEN, | |
) | |
ix += 1 | |
item_object_id = collection.items[-1].item_object_id | |
cur_best_models.append(model) | |
interval_scores.append(float(score)) | |
interval_itens_languages.append(language) | |
interval_itens.append(item_object_id) | |
scores_per_type[model_type] = float(score) | |
break | |
except HfHubHTTPError: | |
continue | |
if 'Portuguese' not in interval_itens_languages: | |
language = ['Portuguese'] | |
model_type = 'language' | |
filtered_df = size_df[size_df[AutoEvalColumn.main_language.name].isin(language)] | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]] | |
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False) | |
print(language, size, list(best_models[AutoEvalColumn.dummy.name])[:10]) | |
# We add them one by one to the leaderboard | |
for i, row in best_models.iterrows(): | |
model = row[AutoEvalColumn.dummy.name] | |
score = row[AutoEvalColumn.average.name] | |
language = row[AutoEvalColumn.main_language.name] | |
if language == 'Portuguese': | |
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" | |
else: | |
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" | |
try: | |
collection = add_collection_item( | |
PATH_TO_COLLECTION, | |
item_id=model, | |
item_type="model", | |
exists_ok=True, | |
note=note, | |
token=H4_TOKEN, | |
) | |
ix += 1 | |
item_object_id = collection.items[-1].item_object_id | |
cur_best_models.append(model) | |
interval_scores.append(float(score)) | |
interval_itens_languages.append(language) | |
interval_itens.append(item_object_id) | |
scores_per_type[model_type] = float(score) | |
break | |
except HfHubHTTPError: | |
continue | |
# fix order: | |
starting_idx = len(cur_best_models) | |
k = 0 | |
for i in np.argsort(interval_scores): | |
if i == k: | |
continue | |
else: | |
try: | |
update_collection_item( | |
collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k | |
) | |
except: | |
pass | |
k += 1 | |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN) | |
for item in collection.items: | |
if item.item_id not in cur_best_models: | |
try: | |
delete_collection_item( | |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN | |
) | |
except HfHubHTTPError: | |
continue | |