from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import uvicorn from fastapi.middleware.cors import CORSMiddleware app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) # Initialize the model and tokenizer model_name = "bigscience/mt0-base" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) class GenerationRequest(BaseModel): prompt: str max_tokens: int = 100 @app.post("/generate") async def generate(request: GenerationRequest): inputs = tokenizer(request.prompt, return_tensors="pt", padding=True, truncation=True) # Move inputs to the same device as the model device = model.device inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(**inputs, max_new_tokens=request.max_tokens) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": generated_text} @app.get("/") def home(): return {"message": "Welcome to the Text Generation API"}