Spaces:
Runtime error
Runtime error
from transformers import PretrainedConfig | |
class Seq2LabelsConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Seq2LabelsModel`]. It is used to | |
instantiate a Seq2Labels model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the Seq2Labels architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | |
pretrained_name_or_path (`str`, *optional*, defaults to `bert-base-cased`): | |
Pretrained BERT-like model path | |
load_pretrained (`bool`, *optional*, defaults to `False`): | |
Whether to load pretrained model from `pretrained_name_or_path` | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
predictor_dropout (`float`, *optional*): | |
The dropout ratio for the classification head. | |
special_tokens_fix (`bool`, *optional*, defaults to `False`): | |
Whether to add additional tokens to the BERT's embedding layer. | |
Examples: | |
```python | |
>>> from transformers import BertModel, BertConfig | |
>>> # Initializing a Seq2Labels style configuration | |
>>> configuration = Seq2LabelsConfig() | |
>>> # Initializing a model from the bert-base-uncased style configuration | |
>>> model = Seq2LabelsModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "bert" | |
def __init__( | |
self, | |
pretrained_name_or_path="bert-base-cased", | |
vocab_size=15, | |
num_detect_classes=4, | |
load_pretrained=False, | |
initializer_range=0.02, | |
pad_token_id=0, | |
use_cache=True, | |
predictor_dropout=0.0, | |
special_tokens_fix=False, | |
label_smoothing=0.0, | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.num_detect_classes = num_detect_classes | |
self.pretrained_name_or_path = pretrained_name_or_path | |
self.load_pretrained = load_pretrained | |
self.initializer_range = initializer_range | |
self.use_cache = use_cache | |
self.predictor_dropout = predictor_dropout | |
self.special_tokens_fix = special_tokens_fix | |
self.label_smoothing = label_smoothing | |