import gradio as gr title = "XLNet" description = "Gradio Demo for XLNet. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
XLNet: Generalized Autoregressive Pretraining for Language Understanding
" examples = [ ['Hello, my dog is cute','xlnet-base-cased'], ['从前,','chinese-xlnet-base'] ] io1 = gr.Interface.load("huggingface/xlnet-base-cased") io2 = gr.Interface.load("huggingface/hfl/chinese-xlnet-base") def inference(inputtext, model): if model == "xlnet-base-cased": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["xlnet-base-cased","chinese-xlnet-base"], type="value", default="xlnet-base-cased", label="model")], [gr.outputs.Textbox(label="Output")], examples=examples, article=article, title=title, description=description).launch(enable_queue=True)