File size: 1,088 Bytes
9257038
 
 
 
 
 
 
 
 
e87704f
9257038
 
4a3ab3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf5164
4a3ab3d
 
 
621725e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr

title = "XLM-RoBERTa"

description = "Gradio Demo for XLM-RoBERTa. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1911.02116' target='_blank'>Unsupervised Cross-lingual Representation Learning at Scale</a></p>"

examples = [
    ["Hello I'm a <mask> model.","xlm-roberta-base"]
]


io1 = gr.Interface.load("huggingface/xlm-roberta-base")

io2 = gr.Interface.load("huggingface/xlm-roberta-large")

def inference(inputtext, model):
    if model == "xlm-roberta-base":
        outlabel = io1(inputtext)
    else:
        outlabel = io2(inputtext)
    return outlabel
     

gr.Interface(
    inference, 
    [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["xlm-roberta-base","xlm-roberta-large"], type="value", default="xlm-roberta-base", label="model")], 
    [gr.outputs.Label(label="Output")],
    examples=examples,
    article=article,
    title=title,
    description=description).launch(enable_queue=True)