import gradio as gr title = "ConvBERT" description = "Gradio Demo for ConvBERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
ConvBERT: Improving BERT with Span-based Dynamic Convolution
" examples = [ ['My name is Wolfgang and I live in Berlin',"conv-bert-base"] ] io1 = gr.Interface.load("huggingface/YituTech/conv-bert-base") io2 = gr.Interface.load("huggingface/YituTech/conv-bert-medium-small") def inference(inputtext, model): if model == "conv-bert-base": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["conv-bert-base","conv-bert-medium-small"], type="value", default="conv-bert-base", label="model")], [gr.outputs.Dataframe(type="pandas",label="Output",max_rows=2000000)], examples=examples, article=article, title=title, description=description).launch(enable_queue=True)