Spaces:
Running
on
A10G
Running
on
A10G
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image | |
import torch | |
import os | |
try: | |
import intel_extension_for_pytorch as ipex | |
except: | |
pass | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import psutil | |
import time | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# check if MPS is available OSX only M1/M2/M3 chips | |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
) | |
torch_device = device | |
torch_dtype = torch.float16 | |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
print(f"device: {device}") | |
if mps_available: | |
device = torch.device("mps") | |
torch_device = "cpu" | |
torch_dtype = torch.float32 | |
if SAFETY_CHECKER == "True": | |
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
t2i_pipe = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
else: | |
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
safety_checker=None, | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
t2i_pipe = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
safety_checker=None, | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
t2i_pipe.set_progress_bar_config(disable=True) | |
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
i2i_pipe.set_progress_bar_config(disable=True) | |
def resize_crop(image, size=512): | |
image = image.convert("RGB") | |
w, h = image.size | |
image = image.resize((size, int(size * (h / w))), Image.BICUBIC) | |
return image | |
async def predict(init_image, prompt, strength, steps, seed=1231231): | |
if init_image is not None: | |
init_image = resize_crop(init_image) | |
generator = torch.manual_seed(seed) | |
last_time = time.time() | |
if steps == 1: | |
strength = 1.0 | |
results = i2i_pipe( | |
prompt=prompt, | |
image=init_image, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=0.0, | |
strength=strength, | |
width=512, | |
height=512, | |
output_type="pil", | |
) | |
else: | |
generator = torch.manual_seed(seed) | |
last_time = time.time() | |
results = t2i_pipe( | |
prompt=prompt, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=0.0, | |
width=512, | |
height=512, | |
output_type="pil", | |
) | |
print(f"Pipe took {time.time() - last_time} seconds") | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
gr.Warning("NSFW content detected.") | |
return Image.new("RGB", (512, 512)) | |
return results.images[0] | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 80rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
init_image_state = gr.State() | |
with gr.Column(elem_id="container"): | |
gr.Markdown( | |
"""# SDXL Turbo Image to Image/Text to Image | |
## Unofficial Demo | |
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo). | |
**Model**: https://huggingface.co/stabilityai/sdxl-turbo | |
""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
prompt = gr.Textbox( | |
placeholder="Insert your prompt here:", | |
scale=5, | |
container=False, | |
) | |
generate_bt = gr.Button("Generate", scale=1) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image( | |
sources=["upload", "webcam", "clipboard"], | |
label="Webcam", | |
type="pil", | |
) | |
with gr.Column(): | |
image = gr.Image(type="filepath") | |
with gr.Accordion("Advanced options", open=False): | |
strength = gr.Slider( | |
label="Strength", | |
value=0.7, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.001, | |
) | |
steps = gr.Slider( | |
label="Steps", value=2, minimum=1, maximum=10, step=1 | |
) | |
seed = gr.Slider( | |
randomize=True, | |
minimum=0, | |
maximum=12013012031030, | |
label="Seed", | |
step=1, | |
) | |
with gr.Accordion("Run with diffusers"): | |
gr.Markdown( | |
"""## Running SDXL Turbo with `diffusers` | |
```bash | |
pip install diffusers==0.23.1 | |
``` | |
```py | |
from diffusers import DiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/sdxl-turbo" | |
).to("cuda") | |
results = pipe( | |
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe", | |
num_inference_steps=1, | |
guidance_scale=0.0, | |
) | |
imga = results.images[0] | |
imga.save("image.png") | |
``` | |
""" | |
) | |
inputs = [image_input, prompt, strength, steps, seed] | |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
image_input.change( | |
fn=lambda x: x, | |
inputs=image_input, | |
outputs=init_image_state, | |
show_progress=False, | |
queue=False, | |
) | |
demo.queue() | |
demo.launch() | |